-
Notifications
You must be signed in to change notification settings - Fork 122
/
main_vsfm.cpp
334 lines (269 loc) · 11.4 KB
/
main_vsfm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
* Line3D++ - Line-based Multi View Stereo
* Copyright (C) 2015 Manuel Hofer
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
// check libs
#include "configLIBS.h"
// EXTERNAL
#include <tclap/CmdLine.h>
#include <tclap/CmdLineInterface.h>
#include <boost/filesystem.hpp>
#include "eigen3/Eigen/Eigen"
// std
#include <iostream>
#include <fstream>
// opencv
#ifdef L3DPP_OPENCV3
#include <opencv2/highgui.hpp>
#else
#include <opencv/highgui.h>
#endif //L3DPP_OPENCV3
// lib
#include "line3D.h"
// INFO:
// This executable reads VisualSfM results (*.nvm) and executes the Line3D++ algorithm.
// If distortion coefficients are stored in the nvm file, you need to use the _original_
// (distorted) images!
int main(int argc, char *argv[])
{
// Info: reads only the _first_ 3D model in the NVM file!
TCLAP::CmdLine cmd("LINE3D++");
TCLAP::ValueArg<std::string> inputArg("i", "input_folder", "folder containing the images (if not specified, path in .nvm file is expected to be correct)", false, "", "string");
cmd.add(inputArg);
TCLAP::ValueArg<std::string> nvmArg("m", "nvm_file", "full path to the VisualSfM result file (.nvm)", true, ".", "string");
cmd.add(nvmArg);
TCLAP::ValueArg<std::string> outputArg("o", "output_folder", "folder where result and temporary files are stored (if not specified --> input_folder+'/Line3D++/')", false, "", "string");
cmd.add(outputArg);
TCLAP::ValueArg<int> scaleArg("w", "max_image_width", "scale image down to fixed max width for line segment detection", false, L3D_DEF_MAX_IMG_WIDTH, "int");
cmd.add(scaleArg);
TCLAP::ValueArg<int> neighborArg("n", "num_matching_neighbors", "number of neighbors for matching", false, L3D_DEF_MATCHING_NEIGHBORS, "int");
cmd.add(neighborArg);
TCLAP::ValueArg<float> sigma_A_Arg("a", "sigma_a", "angle regularizer", false, L3D_DEF_SCORING_ANG_REGULARIZER, "float");
cmd.add(sigma_A_Arg);
TCLAP::ValueArg<float> sigma_P_Arg("p", "sigma_p", "position regularizer (if negative: fixed sigma_p in world-coordinates)", false, L3D_DEF_SCORING_POS_REGULARIZER, "float");
cmd.add(sigma_P_Arg);
TCLAP::ValueArg<float> epipolarArg("e", "min_epipolar_overlap", "minimum epipolar overlap for matching", false, L3D_DEF_EPIPOLAR_OVERLAP, "float");
cmd.add(epipolarArg);
TCLAP::ValueArg<int> knnArg("k", "knn_matches", "number of matches to be kept (<= 0 --> use all that fulfill overlap)", false, L3D_DEF_KNN, "int");
cmd.add(knnArg);
TCLAP::ValueArg<int> segNumArg("y", "num_segments_per_image", "maximum number of 2D segments per image (longest)", false, L3D_DEF_MAX_NUM_SEGMENTS, "int");
cmd.add(segNumArg);
TCLAP::ValueArg<int> visibilityArg("v", "visibility_t", "minimum number of cameras to see a valid 3D line", false, L3D_DEF_MIN_VISIBILITY_T, "int");
cmd.add(visibilityArg);
TCLAP::ValueArg<bool> diffusionArg("d", "diffusion", "perform Replicator Dynamics Diffusion before clustering", false, L3D_DEF_PERFORM_RDD, "bool");
cmd.add(diffusionArg);
TCLAP::ValueArg<bool> loadArg("l", "load_and_store_flag", "load/store segments (recommended for big images)", false, L3D_DEF_LOAD_AND_STORE_SEGMENTS, "bool");
cmd.add(loadArg);
TCLAP::ValueArg<float> collinArg("r", "collinearity_t", "threshold for collinearity", false, L3D_DEF_COLLINEARITY_T, "float");
cmd.add(collinArg);
TCLAP::ValueArg<bool> cudaArg("g", "use_cuda", "use the GPU (CUDA)", false, true, "bool");
cmd.add(cudaArg);
TCLAP::ValueArg<bool> ceresArg("c", "use_ceres", "use CERES (for 3D line optimization)", false, L3D_DEF_USE_CERES, "bool");
cmd.add(ceresArg);
TCLAP::ValueArg<float> constRegDepthArg("z", "const_reg_depth", "use a constant regularization depth (only when sigma_p is metric!)", false, -1.0f, "float");
cmd.add(constRegDepthArg);
// read arguments
cmd.parse(argc,argv);
std::string inputFolder = inputArg.getValue().c_str();
std::string nvmFile = nvmArg.getValue().c_str();
// check if NVM file exists
boost::filesystem::path nvm(nvmFile);
if(!boost::filesystem::exists(nvm))
{
std::cerr << "NVM file " << nvmFile << " does not exist!" << std::endl;
return -1;
}
bool use_full_image_path = false;
if(inputFolder.length() == 0)
{
// parse input folder from .nvm file
use_full_image_path = true;
inputFolder = nvm.parent_path().string();
}
std::string outputFolder = outputArg.getValue().c_str();
if(outputFolder.length() == 0)
outputFolder = inputFolder+"/Line3D++/";
int maxWidth = scaleArg.getValue();
unsigned int neighbors = std::max(neighborArg.getValue(),2);
bool diffusion = diffusionArg.getValue();
bool loadAndStore = loadArg.getValue();
float collinearity = collinArg.getValue();
bool useGPU = cudaArg.getValue();
bool useCERES = ceresArg.getValue();
float epipolarOverlap = fmin(fabs(epipolarArg.getValue()),0.99f);
float sigmaA = fabs(sigma_A_Arg.getValue());
float sigmaP = sigma_P_Arg.getValue();
int kNN = knnArg.getValue();
unsigned int maxNumSegments = segNumArg.getValue();
unsigned int visibility_t = visibilityArg.getValue();
float constRegDepth = constRegDepthArg.getValue();
// create output directory
boost::filesystem::path dir(outputFolder);
boost::filesystem::create_directory(dir);
// create Line3D++ object
L3DPP::Line3D* Line3D = new L3DPP::Line3D(outputFolder,loadAndStore,maxWidth,
maxNumSegments,true,useGPU);
// read NVM file
std::ifstream nvm_file;
nvm_file.open(nvmFile.c_str());
std::string nvm_line;
std::getline(nvm_file,nvm_line); // ignore first line...
std::getline(nvm_file,nvm_line); // ignore second line...
// read number of images
std::getline(nvm_file,nvm_line);
std::stringstream nvm_stream(nvm_line);
unsigned int num_cams;
nvm_stream >> num_cams;
if(num_cams == 0)
{
std::cerr << "No aligned cameras in NVM file!" << std::endl;
return -1;
}
// read camera data (sequentially)
std::vector<std::string> cams_imgFilenames(num_cams);
std::vector<float> cams_focals(num_cams);
std::vector<Eigen::Matrix3d> cams_rotation(num_cams);
std::vector<Eigen::Vector3d> cams_translation(num_cams);
std::vector<Eigen::Vector3d> cams_centers(num_cams);
std::vector<float> cams_distortion(num_cams);
for(unsigned int i=0; i<num_cams; ++i)
{
std::getline(nvm_file,nvm_line);
// image filename
std::string filename;
// focal_length,quaternion,center,distortion
double focal_length,qx,qy,qz,qw;
double Cx,Cy,Cz,dist;
nvm_stream.str("");
nvm_stream.clear();
nvm_stream.str(nvm_line);
nvm_stream >> filename >> focal_length >> qw >> qx >> qy >> qz;
nvm_stream >> Cx >> Cy >> Cz >> dist;
cams_imgFilenames[i] = filename;
cams_focals[i] = focal_length;
cams_distortion[i] = dist;
// rotation amd translation
Eigen::Matrix3d R;
R(0,0) = 1.0-2.0*qy*qy-2.0*qz*qz;
R(0,1) = 2.0*qx*qy-2.0*qz*qw;
R(0,2) = 2.0*qx*qz+2.0*qy*qw;
R(1,0) = 2.0*qx*qy+2.0*qz*qw;
R(1,1) = 1.0-2.0*qx*qx-2.0*qz*qz;
R(1,2) = 2.0*qy*qz-2.0*qx*qw;
R(2,0) = 2.0*qx*qz-2.0*qy*qw;
R(2,1) = 2.0*qy*qz+2.0*qx*qw;
R(2,2) = 1.0-2.0*qx*qx-2.0*qy*qy;
Eigen::Vector3d C(Cx,Cy,Cz);
cams_centers[i] = C;
Eigen::Vector3d t = -R*C;
cams_translation[i] = t;
cams_rotation[i] = R;
}
// read number of images
std::getline(nvm_file,nvm_line); // ignore line...
std::getline(nvm_file,nvm_line);
nvm_stream.str("");
nvm_stream.clear();
nvm_stream.str(nvm_line);
unsigned int num_points;
nvm_stream >> num_points;
// read features (for image similarity calculation)
std::vector<std::list<unsigned int> > cams_worldpointIDs(num_cams);
std::vector<std::vector<float> > cams_worldpointDepths(num_cams);
for(unsigned int i=0; i<num_points; ++i)
{
// 3D position
std::getline(nvm_file,nvm_line);
std::istringstream iss_point3D(nvm_line);
double px,py,pz,colR,colG,colB;
iss_point3D >> px >> py >> pz;
iss_point3D >> colR >> colG >> colB;
Eigen::Vector3d pos3D(px,py,pz);
// measurements
unsigned int num_views;
iss_point3D >> num_views;
unsigned int camID,siftID;
float posX,posY;
for(unsigned int j=0; j<num_views; ++j)
{
iss_point3D >> camID >> siftID;
iss_point3D >> posX >> posY;
cams_worldpointIDs[camID].push_back(i);
cams_worldpointDepths[camID].push_back((pos3D-cams_centers[camID]).norm());
}
}
nvm_file.close();
// load images (parallel)
#ifdef L3DPP_OPENMP
#pragma omp parallel for
#endif //L3DPP_OPENMP
for(int i=0; i<num_cams; ++i)
{
if(cams_worldpointDepths[i].size() > 0)
{
// parse filename
std::string fname = cams_imgFilenames[i];
boost::filesystem::path img_path(fname);
// load image
cv::Mat image;
if(use_full_image_path)
image = cv::imread(inputFolder+"/"+fname,CV_LOAD_IMAGE_GRAYSCALE);
else
image = cv::imread(inputFolder+"/"+img_path.filename().string(),CV_LOAD_IMAGE_GRAYSCALE);
// setup intrinsics
float px = float(image.cols)/2.0f;
float py = float(image.rows)/2.0f;
float f = cams_focals[i];
Eigen::Matrix3d K = Eigen::Matrix3d::Zero();
K(0,0) = f;
K(1,1) = f;
K(0,2) = px;
K(1,2) = py;
K(2,2) = 1.0;
// undistort (if necessary)
float d = cams_distortion[i];
cv::Mat img_undist;
if(fabs(d) > L3D_EPS)
{
// undistorting
Eigen::Vector3d radial(-d,0.0,0.0);
Eigen::Vector2d tangential(0.0,0.0);
Line3D->undistortImage(image,img_undist,radial,tangential,K);
}
else
{
// already undistorted
img_undist = image;
}
// median point depth
std::sort(cams_worldpointDepths[i].begin(),cams_worldpointDepths[i].end());
size_t med_pos = cams_worldpointDepths[i].size()/2;
float med_depth = cams_worldpointDepths[i].at(med_pos);
// add to system
Line3D->addImage(i,img_undist,K,cams_rotation[i],
cams_translation[i],
med_depth,cams_worldpointIDs[i]);
}
}
// match images
Line3D->matchImages(sigmaP,sigmaA,neighbors,epipolarOverlap,
kNN,constRegDepth);
// compute result
Line3D->reconstruct3Dlines(visibility_t,diffusion,collinearity,useCERES);
// save end result
std::vector<L3DPP::FinalLine3D> result;
Line3D->get3Dlines(result);
// save as STL
Line3D->saveResultAsSTL(outputFolder);
// save as OBJ
Line3D->saveResultAsOBJ(outputFolder);
// save as TXT
Line3D->save3DLinesAsTXT(outputFolder);
// save as BIN
Line3D->save3DLinesAsBIN(outputFolder);
// cleanup
delete Line3D;
}