-
Notifications
You must be signed in to change notification settings - Fork 122
/
optimization.h
193 lines (156 loc) · 5.44 KB
/
optimization.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#ifndef I3D_LINE3D_PP_OPTIMIZATION_H_
#define I3D_LINE3D_PP_OPTIMIZATION_H_
/*
* Line3D++ - Line-based Multi View Stereo
* Copyright (C) 2015 Manuel Hofer
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
// check if CERES is installed
#include "configLIBS.h"
#ifdef L3DPP_CERES
// ceres
#ifndef GLOG_NO_ABBREVIATED_SEVERITIES
#define GLOG_NO_ABBREVIATED_SEVERITIES
#endif
#include <ceres/ceres.h>
#include <ceres/rotation.h>
// external
#include <boost/thread.hpp>
// internal
#include "view.h"
#include "commons.h"
// std
#include <map>
/**
* Line3D++ - Optimization Class
* ====================
* 3D line optimization (bundling)
* using CERES.
* ====================
* Author: M.Hofer, 2016
*/
namespace L3DPP
{
// data sizes
const size_t LINE_SIZE = 4;
const size_t INTRINSIC_SIZE = 4;
const size_t CAM_PARAMETERS_SIZE = 6;
const double LOSS_THRESHOLD = 2.0;
// reprojection error for 3D line
struct LineReprojectionError
{
LineReprojectionError(double observed_pt1_x, double observed_pt1_y,
double observed_pt2_x, double observed_pt2_y,
double observed_dir_x, double observed_dir_y):
observed_pt1_x_(observed_pt1_x),
observed_pt1_y_(observed_pt1_y),
observed_pt2_x_(observed_pt2_x),
observed_pt2_y_(observed_pt2_y),
observed_norm_dir_x_(observed_dir_x),
observed_norm_dir_y_(observed_dir_y)
{}
template <typename T>
bool operator()(const T* const camera,
const T* const line,
const T* const intrinsic,
T* residuals) const
{
// convert to Plücker coordinates
T sx = line[1]; T sy = line[2]; T sz = line[3];
T omega = line[0];
T nm = sx*sx+sy*sy+sz*sz;
T div = T(1.0)/T(1.0+nm);
T l[3];
T m[3];
l[0] = div * (T(1.0)-nm+T(2.0)*sx*sx);
l[1] = div * (T(2.0)*sz+T(2.0)*sy*sx);
l[2] = div * (T(-2.0)*sy+T(2.0)*sz*sx);
m[0] = omega * div * (T(-2.0)*sz+T(2.0)*sx*sy);
m[1] = omega * div * (T(1.0)-nm+T(2.0)*sy*sy);
m[2] = omega * div * (T(2.0)*sx+T(2.0)*sz*sy);
// check condition
if(ceres::abs(omega) < 1e-12)
{
residuals[0] = T(0.0);
residuals[1] = T(0.0);
return false;
}
// Translate into camera coordinate system
T Ccl[3]; // crossproduct: cam_center x l
Ccl[0] = camera[4]*l[2] - camera[5]*l[1];
Ccl[1] = -(camera[3]*l[2] - camera[5]*l[0]);
Ccl[2] = camera[3]*l[1] - camera[4]*l[0];
m[0] -= Ccl[0]; m[1] -= Ccl[1]; m[2] -= Ccl[2];
T q[3];
ceres::AngleAxisRotatePoint(camera, m, q);
// project to image
const T& px = intrinsic[0];
const T& py = intrinsic[1];
const T& fx = intrinsic[2];
const T& fy = intrinsic[3];
T proj_l[3];
proj_l[0] = fy*q[0];
proj_l[1] = fx*q[1];
proj_l[2] = -fy*px*q[0]-fx*py*q[1]+fx*fy*q[2];
// normalize line
T len_sqr1 = proj_l[0]*proj_l[0]+proj_l[1]*proj_l[1];
T d = ceres::sqrt(len_sqr1);
if(d < 1e-12)
{
residuals[0] = T(0.0);
residuals[1] = T(0.0);
return false;
}
// angle constraint
T aw = T(1.0);
T dx = proj_l[0];
T dy = proj_l[1];
if(d > 1e-12)
{
dx /= d;
dy /= d;
// angle weight
T dotp = dx*observed_norm_dir_x_+dy*observed_norm_dir_y_;
T angle = ceres::acos(dotp);
if(!ceres::IsNaN(angle) && !ceres::IsInfinite(angle))
{
if(angle > T(M_PI_2))
angle = T(M_PI)-angle;
aw = ceres::exp(2.0*angle);
}
}
residuals[0] = (proj_l[0]*T(observed_pt1_x_)+proj_l[1]*T(observed_pt1_y_)+proj_l[2])/d*aw;
residuals[1] = (proj_l[0]*T(observed_pt2_x_)+proj_l[1]*T(observed_pt2_y_)+proj_l[2])/d*aw;
return true;
}
private:
double observed_pt1_x_;
double observed_pt1_y_;
double observed_pt2_x_;
double observed_pt2_y_;
double observed_norm_dir_x_;
double observed_norm_dir_y_;
};
// optimizer using CERES
class LineOptimizer
{
public:
LineOptimizer(std::map<unsigned int,L3DPP::View*> views,
std::vector<L3DPP::LineCluster3D>* clusters3D,
const unsigned int max_iter,
const std::string& prefix) :
views_(views), clusters3D_(clusters3D),
max_iter_(max_iter), prefix_(prefix){}
// solve the bundling problem
void optimize();
private:
std::map<unsigned int,L3DPP::View*> views_;
std::vector<L3DPP::LineCluster3D>* clusters3D_;
unsigned int max_iter_;
std::string prefix_;
};
}
#endif //L3DPP_CERES
#endif //I3D_LINE3D_PP_OPTIMIZATION_H_