-
Notifications
You must be signed in to change notification settings - Fork 3
/
RealtimeDefectsDetection.py
79 lines (64 loc) · 2.43 KB
/
RealtimeDefectsDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import cv2
import numpy as np
import glob
import random
import darknet as dnet
import time
# Load Yolo
net = cv2.dnn.readNet("weights/yolov3_custom_final.weights", "cfg_files/yolov3_custom.cfg")
#net = cv2.dnn.readNet("yolov3-tiny.weights", "yolov3_tiny_custom.cfg")
# Name custom object
classes = ['Pothole', 'Longitudinal Crack', 'Transverse Crack', 'Alligator Crack']
cap = cv2.VideoCapture("test_data/video3.mp4")
# cap = 'test_images/<your_test_image>.jpg'
font = cv2.FONT_HERSHEY_PLAIN
colors = np.random.uniform(0, 255, size=(100, 3))
img_id = 0
starting_time = time.time()
while True:
_, img = cap.read()
# img = cv2.imread("test_images/41.jpg")
height, width, channels = img.shape
img_id += 1
blob = cv2.dnn.blobFromImage(img, 1 / 255, (416, 416), (0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
output_layers_names = net.getUnconnectedOutLayersNames() ########
layerOutputs = net.forward(output_layers_names)
boxes = []
confidences = []
class_ids = []
for output in layerOutputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.1:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# coordiantes of rectangle
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append((float(confidence)))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.4, 0.3)
if len(indexes) > 0:
for i in indexes.flatten():
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = str(round(confidences[i], 2))
color = colors[i]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label + " " + confidence, (x, y + 20), font, 1, (255, 255, 255), 2)
elapsed_time = time.time() - starting_time
fps = img_id / elapsed_time
cv2.putText(img, "FPS: " + str(round(fps, 2)), (10, 50), font, 2, (0, 0, 0), 3)
cv2.imshow('Image', img)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()