-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
163 lines (126 loc) · 4.88 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import os
import shutil
import time
import math
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from keras_peleenet import peleenet_model
from peleenet import PeleeNet
model_names = [ 'peleenet']
engine_names = [ 'caffe', 'torch']
parser = argparse.ArgumentParser(description='PeleeNet ImageNet Evaluation')
parser.add_argument(
'--data', metavar='DIR',
default='/media/shishuai/DATA1/Documents/Datasets/ImageNet/ILSVRC2012_img_val_pytorch', help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=100, type=int,
metavar='N', help='mini-batch size (default: 100)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--weights', type=str, metavar='PATH', default='peleenet_keras_weights.h5',
help='path to init checkpoint (default: none)')
parser.add_argument('--input-dim', default=224, type=int,
help='size of the input dimension (default: 224)')
def main():
global args
args = parser.parse_args()
print( 'args:',args)
# Data loading code
# Val data loading
valdir = args.data
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(args.input_dim+32),
transforms.CenterCrop(args.input_dim),
transforms.ToTensor(),
normalize,
]))
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
num_classes = len(val_dataset.classes)
print('Total classes: ',num_classes)
# create model
model = peleenet_model(input_shape=(args.input_dim, args.input_dim, 3), num_classes=num_classes)
model.load_weights(args.weights)
validate_keras(val_loader, model)
def validate_keras(val_loader, model):
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(async=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
input = input.cpu().numpy()
input = input.transpose((0, 2, 3, 1))
output = model.predict(input)
output = torch.from_numpy(output).cuda()
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
a = loss.data
b = input.size
losses.update(loss.data, input.shape[0])
top1.update(prec1[0], input.shape[0])
top5.update(prec5[0], input.shape[0])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()