-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter_1.tex
392 lines (354 loc) · 16.9 KB
/
chapter_1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
\chapter{Preliminaries}
\begin{defn}\label{d:finite}%1
A set $A$ is \textbf{finite} if there is a 1-1 mapping of some set $\{1, 2, 3, ..., n\}$
of positive integers onto $A$. $A$ is \textbf{countably infinite} if there is a 1-1
mapping of the set $\Zp$ of positive integers onto $A$. $A$ is \textbf{countable}
if either finite or countably infinite. Otherwise $A$ is \textbf{uncountable}.
\end{defn}
\begin{pblm}%2
(deMorgan laws) If $\{E_\lambda: \lambda \in \Lambda\}$ is any indexed collection of
subsets of some set $E$, then
\begin{equation*}
\left(\bigcup\limits_{\lambda \in \Lambda} E_\lambda\right)^c =
\bigcap\limits_{\lambda \in \Lambda} E_\lambda^c ~~~ \text{ and }~~~
\left(\bigcap\limits_{\lambda \in \Lambda} E_\lambda\right)^c =
\bigcup\limits_{\lambda \in \Lambda} E_\lambda^c
\end{equation*}
where $A^c$ denotes the complement of $A$ in $E$.
\begin{proof}
\begin{equation*}
\left(\bigcup\limits_{\lambda \in \Lambda} E_\lambda\right)^c =
\{x: x \in E_\lambda \text{ for some } \lambda \in \Lambda\}^c =
\{x: x \in E_\lambda^c \forall \lambda \in \Lambda\} =
\bigcap\limits_{\lambda \in \Lambda} E_\lambda^c
\end{equation*}
\begin{equation*}
\left(\bigcup\limits_{\lambda \in \Lambda} E_\lambda\right)^c =
\{x: x \in E_\lambda \text{ for some } \lambda \in \Lambda\}^c =
\{x: x \in E_\lambda^c \forall \lambda \in \Lambda\} =
\bigcap\limits_{\lambda \in \Lambda} E_\lambda^c
\end{equation*}
\end{proof}
\end{pblm}
\begin{rmk}%3
In the previous problem the index set $\Lambda$ need not be countable. One could
imagine indexing a collection of sets by the real numbers, for instance (e.g.
$E_x$ is the interval of length 1 centered at $x$.)
\end{rmk}
\pagebreak
\begin{pblm}%4
Any countable union of sets of real numbers can be expressed as a disjoint
union: $E \cup F = E \cup (F \setminus E)$ or $\bigcup\limits_{k = 1}^\infty
E_k = \bigcup\limits_{k = 1}^\infty F_k$ where $F_1 = E_1$,
$F_k = E_k \setminus \bigcup \limits_{j = 1}^{k - 1} E_j$. Here $A \setminus B =
A \cap B^c$.
\begin{proof}
Let $E, F$ be sets of real numbers.
Then for any $x \in E \cup F$, if $x \in E$, then
$x \in E \subset \{E \cup (F \setminus E)\}$. Similarly, if $x \notin E$ but
$x \in F$, then $x \in (F \setminus E) \subset \{E \cup (F \setminus E)\}$.
Thus
\begin{equation*}
E \cup F ~\subset~ E \cup (F\setminus E).
\end{equation*}
On the other hand, for any $x \in E \cup (F \setminus E)$, if $x \in E$ then
$x \in E \cup F$. Also, if $x \in F \setminus E$ then $x \in F \subset (E \cup F)$.
Thus
\begin{equation*}
E \cup (F \setminus E) \subset E \cup F.
\end{equation*}
\begin{equation*}
E \cup F ~ \substack{\subset \\ \supset}~ E \cup (F \setminus E) ~~~\implies~~~
E \cup F = E \cup (F \setminus E).
\end{equation*}
For the more general case, take any $x \in \bigcup\limits_{j=1}^\infty F_k$, then there is some $F_j$ such that
$x \in F_j$. Since each $F_j \subset E_j$, then
$x \in E_j \subset \bigcup\limits_{j=1}^\infty E_j$. Therefore
$\bigcup\limits_{j=1}^\infty F_j\subset \bigcup\limits_{j=1}^\infty E_j$.
On the other hand, for any $x \in \bigcup\limits_{j=1}^\infty E_j$. Then there is
some $k$ such that $x \in E_k$. Let $a$ be the
smallest index such that $x \in E_a$. Then $x \in E_a$ and $\forall b < a$, $x
\notin E_b$. Therefore $x \in F_a$, and so $x \in \bigcup\limits_{j=1}^\infty F_j$.
Therefore, since we have shown subset containment in both directions,
\begin{equation*}
\bigcup\limits_{j=1}^\infty E_j = \bigcup\limits_{j=1}^\infty F_j.
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}%5
If $a$ and $b$ are real numbers, then $a \le b$ iff for every $\epsilon > 0$,
$a \le b + \epsilon$. Similarly, $a \ge b$ iff for every $\epsilon > 0$,
$a \ge b - \epsilon$.
\begin{proof}
Let $a, b \in \R$ and $a \le b$. Then for every $\epsilon > 0$,
$a \le b < b + \epsilon$, and therefore $a \le b + \epsilon$.
Now, let $a, b \in \R$, and assume that for any
$\epsilon > 0$, $a \le b + \epsilon$. Then if $a > b$, there is some
$\epsilon_1 \ge 0$ such that $a = b + \epsilon_1$. But since $a \le b + \epsilon$ for
all $\epsilon > 0$, we have
$a \le b + \frac{\epsilon}{2} < b + \epsilon_1 = a $
which is a contradiction. Therefore $a \le b$.
Now let $a \ge b$. This can be re-written as $b \le a$. By
the first part of the problem, $b \le a$ iff $\forall \epsilon > 0$,
$b \le a + \epsilon$. This is true iff $b - \epsilon \le a$.
\end{proof}
\end{pblm}
\begin{rmk}%6
This problem may seem trivial, but we will use it over and over again during the quarter.
It says that we can give a little something away, and then take it back.
\end{rmk}
\begin{defn}\label{d:boundedset}%7
~
\begin{enumerate}[(a)]
\item A set $E$ of real numbers is \textbf{bounded above} if there
exists a real number $u$ such that for every $x \in E$, $x \le u$.
we call $u$ an \textbf{upper bound} for $E$. Similarly, $E$ is
\textbf{bounded below} if there exists a real number $w$ such that
for every $x \in E$, $w \le x$, and then $w$ is a \textbf{lower bound}
for $E$. $E$ is \textbf{bounded}, if bounded both above and below.
\item If $E$ is bounded above and nonempty, the \textbf{supremum}
(or least upper bound) of $E$, sup $E$, is the unique real number $s$
such that (i) $s$ is an upper bound for $E$ and (ii) $s < u$ for any
other upper bound $u$ for $E$. Similarly, if $E$ is bounded below
and nonempty, the \textbf{infimum} (or greatest lower bound) of $E$,
inf $E$, is the unique real number $t$ such that (i) $t$ is a lower
bound for $E$ and (ii) $t > w$ for any other lower bound $w$ for $E$.
(Recall that the Least Upper Bound Axiom guarantees the existence of
the supremum and infimum.)
\item A real number $c$ is a \textbf{cluster point} of a set $E$ of
real numbers if for every $\epsilon > 0$ there is $y \in E$ such that
$0 < |c - y| < \epsilon$.
\end{enumerate}
\end{defn}
\begin{pblm}%8
Let $v$ be a lower bound for a set $E$ of real numbers, where $v \notin E$. Then
$v = \inf E$ iff $v$ is a cluster point of $E$.
\begin{proof}
Let $v = \inf E$, $v \notin E$. Then for any $\epsilon > 0$,
there is $y \in E$ such that $y < v + \epsilon$, as otherwise $v + \epsilon$ would
be a lower bound of $E$ greater than $v = \inf E$. Now, for any $\epsilon > 0$, we
have $y \in E$ such that
\begin{equation*}
v < y < v + \epsilon
\end{equation*}
Subtracting $v$ from each inequality, this can be re-written as
\begin{equation*}
0 < y - v < \epsilon
\end{equation*}
and since $y > v$, this is
\begin{equation*}
0 < |y - v| < \epsilon ~~~ \Leftrightarrow ~~~ 0 < |v - y| < \epsilon
\end{equation*}
Thus $v$ is a cluster point of $E$.
Now, assume that $v$ is a cluster point of $E$, $v \notin E$, and $v$ is a L.B. for
$E$.
For any $w > v$, $w = v + \epsilon$ for some $\epsilon > 0$, there is $y \in E$ such that
$v < y < v + \epsilon$. Therefore $w$ is not a lower bound of $E$. Thus $v = \inf E$.
\end{proof}
\end{pblm}
\pagebreak
\begin{defn}\label{d:boundedsequence}%9
~
\begin{enumerate}[(a)]
\item A \textbf{sequence} of real numbers $\{a_k\}_{k=1}^\infty$ is
a function from the set of positive integers $\Zp$ into the
real numbers. (More generally, the domain of a sequence can be any set
of the form $\{k: k \ge k_0\}$ for some integer $k_0$.) The sequence is
\textbf{bounded} (or bounded above or ... ) if its range is bounded
(or ... ).
\item The sequence $\{a_k\}_{k = 1}^\infty$ \textbf{converges} to the
\textbf{limit} $a$ if for each $\epsilon > 0$ there is a positive
integer $K$ such that $|a_k - a| < \epsilon$ for all $k \ge K$.
\item A \textbf{subsequence} $\{a_{k_j}\}_{j = 1}^\infty$ of a
sequence $\{a_k\}_{k = 1}^\infty$ is the composition of
$\{a_k\}_{k = 1}^\infty$ with an increasing sequence
$\{k_j\}_{j = 1}^\infty$ of integers
\end{enumerate}
\end{defn}
\begin{pblm}%10
Let $\{a_k\}_{k = 1}^\infty$ be a non-decreasing sequence of real numbers. Then
$\{a_k\}_{k = 1}^\infty$ is bounded above iff $\{a_k\}_{k = 1}^\infty$ converges
to the least upper bound of the set $\{a_k : k \in \Zp\}$. (Of course
there is a symmetric result for non-increasing sequences.)
\begin{proof}
Let $\{a_k\}_{k=1}^\infty$ be bounded above. Now, let $L$ be the least upper bound of
the set $\{a_k: k \in \Zp\}$. Since $\{a_k\}$ is a non-decreasing sequence,
for each $ k \in \Zp$, $a_k \le a_{k + 1} \le a_{k + 2} \le ... $
And also, for all $k \in \Zp$, $a_k \le L$ since $L$ is the least upper bound.
Therefore for all $k \in \Zp$,
\begin{equation*}
a_k \le a_{k + 1} \le \cdots \le L
\end{equation*}
For any $\epsilon > 0$, let $a^\ast = L - \epsilon < L$. Then since $L$ is the least
upper bound of the set $\{a_k: k \in \Zp\}$, we know that $a^\ast \le a_j$ for
some $j \in \Zp$. Therefore (using the fact that the sequence is
non-decreasing) for all $k \ge j$,
\begin{equation*}
L \ge a_k \ge L - \epsilon
\end{equation*}
which can be re-written as
\begin{equation*}
0 \le |L - a_k| \le \epsilon
\end{equation*}
Thus $\{a_k\}_{k=1}^\infty$ converges to the least upper bound
Now, if $\{a_k\}_{k=1}^\infty$ converges to the L.U.B $L$ of $\{a_k:k\in\Zp\}$
and $a_k \le a_{k+1}$ for all $k \in \Zp$, then for all $k \in \Zp$,
we have
\begin{equation*}
a_k \le a_{k + 1} \le \cdots \le L
\end{equation*}
Thus $\{a_k\}_{k = 1}^\infty$ is bounded above.
\end{proof}
\end{pblm}
\pagebreak
\begin{rmk}%11
~
\begin{enumerate}
\item Note the distinction between the sequence $\{a_k\}_{k = 1}^\infty$, which
as a function is a set of ordered pairs of real numbers, and the set
$\{a_k: k \in \Zp\} \subset \R$ which is the range of that
function.
\item If $\{a_k\}_{k = 1}^\infty$ is non-decreasing and not bounded above,
we often write $\lim\limits_{k\to\infty} a_k = \infty$ and speak as though
$\infty$ were a number ``way out there at the end of the number line.'' We do
not, however, do arithmetic with $\infty$.
\end{enumerate}
\end{rmk}
\begin{defn}\label{d:convergesequence}%12
~
\begin{enumerate}
\item $\{a_k\}_{k = 1}^\infty$ be a sequence of real numbers. The numbers
$s_n = \sum\limits_{k = 1}^n a_k$ are the \textbf{partial sums of the infinite
series} $\sum\limits_{k = 1}^\infty a_k$. The series \textbf{converges} if
$\lim\limits_{n\to\infty}s_n$ exists (as a real number). Otherwise the series
\textbf{diverges}. If the series converges, the number $s = \lim\limits_{n\to\infty}
s_n$ is called the \textbf{sum of the infinite series} and is denoted
$\sum\limits_{k = 1}^\infty a_k$.
\item More generally, if $S$ is any set of positive integers, and for any
positive integer $n$, $S_n = \{k \in \Zp:k\in S \text{ and }k\le n\}$,
we define the finite sums $s_n = \sum\limits_{k \in S_n} a_k$ to be the
\textbf{partial sums} of the series $\sum\limits_{k \in S}a_k$, and say that
the series \textbf{converges} if $\lim\limits_{n\to\infty}s_n$ exists (as a
real number). Otherwise the series \textbf{diverges}. If the series converges,
the number $s = \lim\limits_{n\to\infty}s_n$ is called the \textbf{sum of the
series} and is denoted $\sum\limits_{k \in S}a_k$.
\end{enumerate}
\end{defn}
\begin{pblm}%13
Let $\{a_k\}_{k = 1}^\infty$ be a sequence of non-negative reals. Let
$\{F_j\}_{j = 1}^\infty$ be any nested sequence of sets of positive integers
such that $F_1 \subset F_2 \subset ...$ and $\bigcup\limits_{j = 1}^\infty F_j
= \Zp$. For each $j$ let $f_j = \sum\limits_{k \in F_j} a_k$. Then
$\sup_j f_j = \sum\limits_{k = 1}^\infty a_k$. (This means that if either
number is finite, then they both are and and then they are equal. Notice
that it is not assumed that the sets $F_j$ are finite, so the $f_j$ need not
be finite.)\\
%\textbf{Remark}: This is a strong form of saying that a series with non-negative
%terms can be summed in any order without affecting the sum.
\begin{proof}
$\sum\limits_{k=1}^\infty a_k = \sum\limits_{k \in \cup_{j=1}^\infty F_j}a_k \in \{f_j\}_{j=1}^\infty$
And so, by definition
\begin{equation*}
\sum\limits_{k=1}^\infty a_k ~~\le~~ \sup_j f_j
\end{equation*}
Now, since $\forall j \in \Zp$, $F_j \subset F_{j+1}$, then
\begin{equation*}
f_j = \sum\limits_{k \in F_j}a_k \le \sum\limits_{k\in F_{j+1}} a_k = f_{j+1}
\end{equation*}
Now, if the $F_j$ are finite, then
using the fact that $\{f_j\}_{j=1}^\infty$ is a sequence of non-decreasing positive
real values, we have
\begin{equation*}
f_j = \sum\limits_{k\in F_j}a_k \le \lim\limits_{n\to\infty}f_n = \sum\limits_{k=1}^\infty a_k ~~~ \forall j \in \Zp
\end{equation*}
On the other hand, if the $F_j$ are not necessarily finite, the values can be re-ordered in
increasing order, and then each $f_j$ can be written
as the limit of a sequence of partial sums
$\lim\limits_{n\to\infty}\sum\limits_{k=1}^n a_{j(k)}$
where $F_j = \{j(k)\}_{k=1}^\infty$. Then all of the partial sums are bounded above by
$\sum\limits_{k=1}^\infty a_k$, and so $f_j \le \sum\limits_{k=1}^\infty a_k$ for all $j$
and irrespective whether the $F_j$ are finite or infinite.
Therefore $\sum\limits_{k=1}^\infty a_k$ is an upper bound of $\{f_j\}_{j=1}^\infty$, and so
\begin{equation*}
\sup_j f_j \le \sum\limits_{k\in F_j}a_k
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}%14
Consider the double indexed set $\{a_{j,k}\}_{j,k=1}^\infty$ of non-negative
numbers. Set $S_n = \sum\limits_{j,k=1}^na_{j,k}$. (This means the sum of the
$n^2$ terms $a_{j,k}$ where $1 \le j \le n$ and $1 \le k \le n$.) Let
$A_1 = \lim\limits_{n\to\infty}S_n$,
$A_2 = \sum\limits_{j=1}^\infty \sum\limits_{k=1}^\infty a_{j,k}$,
$A_3 = \sum\limits_{k=1}^\infty \sum\limits_{j=1}^\infty a_{j,k}$.
Then $A_1=A_2=A_3$. This means that if any
one of these three numbers is finite, then all of them are and they are
equal. (This is, of course, the equivalent for series of the fact that a
double integral can be evaluated as an iterated integral. For instance, $A_2$
if it exists, is the limit as $n \to \infty$ of
$\sum\limits_{j=1}^\infty\sum\limits_{k=1}^\infty a_{j,k}$.)
\begin{proof}
Now, as a sum of non-negative numbers for any $n$,
\begin{equation*}
S_n = \sum\limits_{j=1}^n\sum\limits_{k=1}^na_{j,k}\le
\sum\limits_{j=1}^\infty\sum\limits_{k=1}^\infty a_{j,k}=A_2
\end{equation*}
which implies that, since this is true for any $n$, $A_1 \le A_2$.
Now to show that $A_2 \le A_1$, we will consider the sequence
$\{T_n\}_{n=1}^\infty = \{\sum\limits_{j=1}^n\sum\limits_{k=1}^\infty a_{j,k}\}_{n=1}^\infty$. This is a
sequence of non-decreasing positive values with $\lim\limits_{n\to\infty}T_n = A_2$.
Also for all $n \in \Zp$,
\begin{equation*}
\sum\limits_{j=1}^n\sum\limits_{k=1}^\infty a_{j,k} \le A_1
\end{equation*}
And so $A_2 \le A_1$.
Note that $S_n = \sum\limits_{j=1}^n\sum\limits_{k=1}^na_{j,k}=\sum\limits_{k=1}^n\sum\limits_{j=1}^na_{j,k}$
As a finite sum, and that, since this is true for all $n$, then showing that $A_1 = A_2$ is equivalent to
showing $A_1 = A_3$
\end{proof}
\end{pblm}
\begin{defn}%15
~
\begin{enumerate}[(a)]
\item An \textbf{open ball} about a real number $x$ of radius $r$
is the set $B_r(x) = (x - r, x + r)$.
\item A set $G$ of real numbers is \textbf{open} if it contains an
open ball about each of its points.
\item A set $F$ of real numbers is \textbf{closed} if every cluster
point of $F$ is contained in $F$.
\end{enumerate}
\end{defn}
\begin{pblm}%16
Every open subset $G$ of real numbers can be expressed as a countable union
of pairwise disjoint open intervals. (Think about the rationals in $G$.)
\begin{proof}
Consider all of the the rational numbers in $G$. This is a countable set, so
indexing by any subset of this set will also be countable.
Now, for all rational $x \in G$, let $I_x$ be the largest open interval in $G$ containing
$x$. For any $y \in G$ such that $y$ is not rational, Because $G$ is open, we can find
$\epsilon > 0$ such that $y \in (x - \epsilon, x + \epsilon)\subset G$ for some rational
$x \in G$. Then the set $\{I_x : x \in G \text{ is rational} \}$ is an open cover of $G$.
To find a subset that are pairwise disjoint and that covers all of $G$, consider any two
rational numbers $x, y \in G$. If $I_x \cap I_y \neq \emptyset$, then by the maximality
of $I_x$ and $I_y$ $x \in I_x \cup I_y \subset G$, and so $I_x = I_x \cup I_y = I_y$.
Thus every pair of intervals
$I_x, I_y$ is either disjoint or identical intervals.
\end{proof}
\end{pblm}
\begin{defn}\label{d:compact}%17
The set $E$ of real numbers is \textbf{compact} if every sequence
$\{a_k\}_{k=1}^\infty$ of elements of $E$ has a subsequence that converges
to an element of $E$.
\end{defn}
\begin{fact}%18
These properties are equivalent for a set $E$ of real numbers.
\begin{enumerate}[(a)]
\item $E$ is compact.
\item $E$ is closed and bounded.
\item Every infinite subset of $E$ has a cluster point in $E$.
\item If $\{G_\lambda: \lambda \in \Lambda\}$ is a collection of open
sets such that $E \subset \bigcup\limits_{\lambda \in \Lambda}G_\lambda$
(an \textbf{open cover} of $E$), then some finite subcollection is
also an open cover of $E$.
\end{enumerate}
\end{fact}