-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_happy.py
754 lines (608 loc) · 41 KB
/
train_happy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
import argparse
import os
import math
import time
from tqdm import tqdm
from copy import deepcopy
from sklearn.cluster import KMeans
import numpy as np
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
from torch.optim import SGD, lr_scheduler
from project_utils.general_utils import set_seed, init_experiment, AverageMeter
from project_utils.cluster_and_log_utils import log_accs_from_preds
from data.augmentations import get_transform
from data.get_datasets import get_class_splits, ContrastiveLearningViewGenerator, get_datasets
from models.utils_simgcd import DINOHead, get_params_groups, SupConLoss, info_nce_logits, DistillLoss
from models.utils_simgcd_pro import get_kmeans_centroid_for_new_head
from models.utils_proto_aug import ProtoAugManager
from models import vision_transformer as vits
from config import dino_pretrain_path, exp_root_happy
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
'''offline train and test'''
'''====================================================================================================================='''
def train_offline(student, train_loader, test_loader, args):
params_groups = get_params_groups(student)
optimizer = SGD(params_groups, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=args.epochs_offline,
eta_min=args.lr * 1e-3,
)
cluster_criterion = DistillLoss(
args.warmup_teacher_temp_epochs,
args.epochs_offline,
args.n_views,
args.warmup_teacher_temp,
args.teacher_temp,
)
# best acc log
best_test_acc_old = 0
for epoch in range(args.epochs_offline):
loss_record = AverageMeter()
student.train()
for batch_idx, batch in enumerate(train_loader):
images, class_labels, uq_idxs = batch # NOTE!!! no mask lab in this setting
mask_lab = torch.ones_like(class_labels) # NOTE!!! all samples are labeled
class_labels, mask_lab = class_labels.cuda(non_blocking=True), mask_lab.cuda(non_blocking=True).bool()
images = torch.cat(images, dim=0).cuda(non_blocking=True)
student_proj, student_out = student(images)
teacher_out = student_out.detach()
# clustering, sup
sup_logits = torch.cat([f[mask_lab] for f in (student_out / 0.1).chunk(2)], dim=0)
sup_labels = torch.cat([class_labels[mask_lab] for _ in range(2)], dim=0)
cls_loss = nn.CrossEntropyLoss()(sup_logits, sup_labels)
# clustering, unsup
cluster_loss = cluster_criterion(student_out, teacher_out, epoch)
avg_probs = (student_out / 0.1).softmax(dim=1).mean(dim=0)
me_max_loss = - torch.sum(torch.log(avg_probs**(-avg_probs))) + math.log(float(len(avg_probs)))
cluster_loss += args.memax_weight * me_max_loss
# represent learning, unsup
contrastive_logits, contrastive_labels = info_nce_logits(features=student_proj)
contrastive_loss = torch.nn.CrossEntropyLoss()(contrastive_logits, contrastive_labels)
# representation learning, sup
student_proj = torch.cat([f[mask_lab].unsqueeze(1) for f in student_proj.chunk(2)], dim=1)
student_proj = torch.nn.functional.normalize(student_proj, dim=-1)
sup_con_labels = class_labels[mask_lab]
sup_con_loss = SupConLoss()(student_proj, labels=sup_con_labels)
# Total loss
loss = 0
loss += (1 - args.sup_weight) * cluster_loss + args.sup_weight * cls_loss
loss += (1 - args.sup_weight) * contrastive_loss + args.sup_weight * sup_con_loss
# logs
pstr = ''
pstr += f'cls_loss: {cls_loss.item():.4f} '
pstr += f'cluster_loss: {cluster_loss.item():.4f} '
pstr += f'sup_con_loss: {sup_con_loss.item():.4f} '
pstr += f'contrastive_loss: {contrastive_loss.item():.4f} '
loss_record.update(loss.item(), class_labels.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.print_freq == 0:
args.logger.info('Epoch: [{}][{}/{}]\t loss {:.5f}\t {}'
.format(epoch, batch_idx, len(train_loader), loss.item(), pstr))
args.logger.info('Train Epoch: {} Avg Loss: {:.4f} '.format(epoch, loss_record.avg))
args.logger.info('Testing on disjoint test set...')
all_acc_test, old_acc_test, _ = test_offline(student, test_loader, epoch=epoch, save_name='Test ACC', args=args)
args.logger.info('Test Accuracies: All {:.4f} | Old {:.4f}'.format(all_acc_test, old_acc_test))
# Step schedule
exp_lr_scheduler.step()
save_dict = {
'model': student.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch + 1,
}
torch.save(save_dict, args.model_path)
args.logger.info("model saved to {}.".format(args.model_path))
if old_acc_test > best_test_acc_old:
args.logger.info(f'Best ACC on Old Classes on test set: {old_acc_test:.4f}...')
torch.save(save_dict, args.model_path[:-3] + f'_best.pt')
args.logger.info("model saved to {}.".format(args.model_path[:-3] + f'_best.pt'))
best_test_acc_old = old_acc_test
args.logger.info(f'Exp Name: {args.exp_name}')
args.logger.info(f'Metrics with best model on test set: Old: {best_test_acc_old:.4f}')
args.logger.info('\n')
def test_offline(model, test_loader, epoch, save_name, args):
model.eval()
preds, targets = [], []
mask = np.array([])
# First extract all features
for batch_idx, (images, label, _) in enumerate(tqdm(test_loader)):
images = images.cuda(non_blocking=True)
with torch.no_grad():
_, logits = model(images)
preds.append(logits.argmax(1).cpu().numpy())
targets.append(label.cpu().numpy())
mask = np.append(mask, np.array([True if x.item() in range(len(args.train_classes)) else False for x in label]))
preds = np.concatenate(preds)
targets = np.concatenate(targets)
# -----------------------
# EVALUATE
# -----------------------
all_acc, old_acc, new_acc = log_accs_from_preds(y_true=targets, y_pred=preds, mask=mask,
T=epoch, eval_funcs=args.eval_funcs, save_name=save_name,
args=args)
return all_acc, old_acc, new_acc
'''====================================================================================================================='''
'''online train and test'''
'''====================================================================================================================='''
def train_online(student, student_pre, proto_aug_manager, train_loader, test_loader, current_session, args):
params_groups = get_params_groups(student)
optimizer = SGD(params_groups, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=args.epochs_online_per_session,
eta_min=args.lr * 1e-3,
)
cluster_criterion = DistillLoss(
args.warmup_teacher_temp_epochs,
args.epochs_online_per_session,
args.n_views,
args.warmup_teacher_temp,
args.teacher_temp,
)
# best acc log
best_test_acc_all = 0
best_test_acc_old = 0
best_test_acc_new = 0
best_test_acc_soft_all = 0
best_test_acc_seen = 0
best_test_acc_unseen = 0
for epoch in range(args.epochs_online_per_session):
loss_record = AverageMeter()
student.train()
student_pre.eval()
for batch_idx, batch in enumerate(train_loader):
images, class_labels, uq_idxs, _ = batch # NOTE!!! mask lab in this setting
mask_lab = torch.zeros_like(class_labels) # NOTE!!! all samples are unlabeled
class_labels, mask_lab = class_labels.cuda(non_blocking=True), mask_lab.cuda(non_blocking=True).bool()
images = torch.cat(images, dim=0).cuda(non_blocking=True)
student_proj, student_out = student(images)
teacher_out = student_out.detach()
# clustering, unsup
cluster_loss = cluster_criterion(student_out, teacher_out, epoch)
avg_probs = (student_out / 0.1).softmax(dim=1).mean(dim=0)
#me_max_loss = - torch.sum(torch.log(avg_probs**(-avg_probs))) + math.log(float(len(avg_probs)))
#cluster_loss += args.memax_weight * me_max_loss
# 1. inter old and new
avg_probs_old_in = avg_probs[:args.num_seen_classes]
avg_probs_new_in = avg_probs[args.num_seen_classes:]
#avg_probs_old_new = torch.tensor([torch.sum(avg_probs_old_in), torch.sum(avg_probs_new_in)], requires_grad=True, device=device)
#me_max_loss_old_new = - torch.sum(torch.log(avg_probs_old_new**(-avg_probs_old_new))) + math.log(float(len(avg_probs_old_new)))
avg_probs_old_marginal, avg_probs_new_marginal = torch.sum(avg_probs_old_in), torch.sum(avg_probs_new_in)
me_max_loss_old_new = avg_probs_old_marginal * torch.log(avg_probs_old_marginal) + avg_probs_new_marginal * torch.log(avg_probs_new_marginal) + math.log(2)
# 2. old (intra) & new (intra)
avg_probs_old_in_norm = avg_probs_old_in / torch.sum(avg_probs_old_in) # norm
avg_probs_new_in_norm = avg_probs_new_in / torch.sum(avg_probs_new_in) # norm
me_max_loss_old_in = - torch.sum(torch.log(avg_probs_old_in_norm**(-avg_probs_old_in_norm))) + math.log(float(len(avg_probs_old_in_norm)))
if args.num_novel_class_per_session > 1:
me_max_loss_new_in = - torch.sum(torch.log(avg_probs_new_in_norm**(-avg_probs_new_in_norm))) + math.log(float(len(avg_probs_new_in_norm)))
else:
me_max_loss_new_in = torch.tensor(0.0, device=device)
# overall me-max loss
cluster_loss += args.memax_old_new_weight * me_max_loss_old_new + \
args.memax_old_in_weight * me_max_loss_old_in + args.memax_new_in_weight * me_max_loss_new_in
# represent learning, unsup
contrastive_logits, contrastive_labels = info_nce_logits(features=student_proj)
contrastive_loss = torch.nn.CrossEntropyLoss()(contrastive_logits, contrastive_labels)
proto_aug_loss = proto_aug_manager.compute_proto_aug_hardness_aware_loss(student)
feats = student[0](images)
feats = torch.nn.functional.normalize(feats, dim=-1)
with torch.no_grad():
feats_pre = student_pre[0](images)
feats_pre = torch.nn.functional.normalize(feats_pre, dim=-1)
feat_distill_loss = (feats-feats_pre).pow(2).sum() / len(feats)
# Total loss
loss = 0
loss += 1 * cluster_loss
loss += 1 * contrastive_loss
loss += args.proto_aug_weight * proto_aug_loss
loss += args.feat_distill_weight * feat_distill_loss
# logs
pstr = ''
pstr += f'me_max_loss_old_new: {me_max_loss_old_new.item():.4f} '
pstr += f'me_max_loss_old_in: {me_max_loss_old_in.item():.4f} '
pstr += f'me_max_loss_new_in: {me_max_loss_new_in.item():.4f} '
pstr += f'cluster_loss: {cluster_loss.item():.4f} '
pstr += f'contrastive_loss: {contrastive_loss.item():.4f} '
pstr += f'proto_aug_loss: {proto_aug_loss.item():.4f} '
pstr += f'feat_distill_loss: {feat_distill_loss.item():.4f} '
loss_record.update(loss.item(), class_labels.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.print_freq == 0:
args.logger.info('Epoch: [{}][{}/{}]\t loss {:.5f}\t {}'
.format(epoch, batch_idx, len(train_loader), loss.item(), pstr))
new_true_ratio = len(class_labels[class_labels>=args.num_seen_classes]) / len(class_labels)
logits = student_out / 0.1
preds = logits.argmax(1)
new_pred_ratio = len(preds[preds>=args.num_seen_classes]) / len(preds)
args.logger.info(f'Avg old prob: {torch.sum(avg_probs_old_in).item():.4f} | Avg new prob: {torch.sum(avg_probs_new_in).item():.4f} | Pred new ratio: {new_pred_ratio:.4f} | Ground-truth new ratio: {new_true_ratio:.4f}')
args.logger.info('Train Epoch: {} Avg Loss: {:.4f} '.format(epoch, loss_record.avg))
args.logger.info('Testing on disjoint test set...')
all_acc_test, old_acc_test, new_acc_test, \
all_acc_soft_test, seen_acc_test, unseen_acc_test = test_online(student, test_loader, epoch=epoch, save_name='Test ACC', args=args)
args.logger.info('Test Accuracies (Hard): All {:.4f} | Old {:.4f} | New {:.4f}'.format(all_acc_test, old_acc_test, new_acc_test))
args.logger.info('Test Accuracies (Soft): All {:.4f} | Seen {:.4f} | Unseen {:.4f}'.format(all_acc_soft_test, seen_acc_test, unseen_acc_test))
# Step schedule
exp_lr_scheduler.step()
save_dict = {
'model': student.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch + 1,
}
#torch.save(save_dict, args.model_path[:-3] + '_session-' + str(current_session) + f'.pt') # NOTE!!! session
#args.logger.info("model saved to {}.".format(args.model_path[:-3] + '_session-' + str(current_session) + f'.pt'))
if all_acc_test > best_test_acc_all:
args.logger.info(f'Best ACC on All Classes on test set of session-{current_session}: {all_acc_test:.4f}...')
torch.save(save_dict, args.model_path[:-3] + '_session-' + str(current_session) + f'_best.pt') # NOTE!!! session
args.logger.info("model saved to {}.".format(args.model_path[:-3] + '_session-' + str(current_session) + f'_best.pt'))
best_test_acc_all = all_acc_test
best_test_acc_old = old_acc_test
best_test_acc_new = new_acc_test
best_test_acc_soft_all = all_acc_soft_test
best_test_acc_seen = seen_acc_test
best_test_acc_unseen = unseen_acc_test
args.logger.info(f'Exp Name: {args.exp_name}')
args.logger.info(f'Metrics with best model on test set (Hard) of session-{current_session}: All (Hard): {best_test_acc_all:.4f} Old: {best_test_acc_old:.4f} New: {best_test_acc_new:.4f}')
args.logger.info(f'Metrics with best model on test set (Hard) of session-{current_session}: All (Soft): {best_test_acc_soft_all:.4f} Seen: {best_test_acc_seen:.4f} Unseen: {best_test_acc_unseen:.4f}')
args.logger.info('\n')
# log best test acc list
args.best_test_acc_all_list.append(best_test_acc_all)
args.best_test_acc_old_list.append(best_test_acc_old)
args.best_test_acc_new_list.append(best_test_acc_new)
args.best_test_acc_soft_all_list.append(best_test_acc_soft_all)
args.best_test_acc_seen_list.append(best_test_acc_seen)
args.best_test_acc_unseen_list.append(best_test_acc_unseen)
def test_online(model, test_loader, epoch, save_name, args):
model.eval()
preds, targets = [], []
mask_hard = np.array([])
mask_soft = np.array([])
for batch_idx, (images, label, _) in enumerate(tqdm(test_loader)):
images = images.cuda(non_blocking=True)
with torch.no_grad():
_, logits = model(images)
preds.append(logits.argmax(1).cpu().numpy())
targets.append(label.cpu().numpy())
mask_hard = np.append(mask_hard, np.array([True if x.item() in range(len(args.train_classes))
else False for x in label]))
mask_soft = np.append(mask_soft, np.array([True if x.item() in range(args.num_seen_classes)
else False for x in label]))
preds = np.concatenate(preds)
targets = np.concatenate(targets)
# -----------------------
# EVALUATE
# -----------------------
all_acc, old_acc, new_acc = log_accs_from_preds(y_true=targets, y_pred=preds, mask=mask_hard,
T=epoch, eval_funcs=args.eval_funcs, save_name=save_name,
args=args)
all_acc_soft, seen_acc, unseen_acc = log_accs_from_preds(y_true=targets, y_pred=preds, mask=mask_soft,
T=epoch, eval_funcs=args.eval_funcs, save_name=save_name,
args=args)
return all_acc, old_acc, new_acc, all_acc_soft, seen_acc, unseen_acc
'''====================================================================================================================='''
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--num_workers_test', default=4, type=int)
parser.add_argument('--eval_funcs', nargs='+', help='Which eval functions to use', default='v2')
parser.add_argument('--dataset_name', type=str, default='cifar100', help='options: cifar10, cifar100, tiny_imagenet, cub, imagenet_100')
parser.add_argument('--use_ssb_splits', action='store_true', default=True)
parser.add_argument('--grad_from_block', type=int, default=11)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-5)
parser.add_argument('--exp_root', type=str, default=exp_root_happy)
parser.add_argument('--transform', type=str, default='imagenet')
parser.add_argument('--temperature', type=float, default=1.0)
parser.add_argument('--sup_weight', type=float, default=0.35)
parser.add_argument('--n_views', default=2, type=int)
parser.add_argument('--contrast_unlabel_only', action='store_true', default=False)
'''group-wise entropy regularization'''
# memax weight for offline session
parser.add_argument('--memax_weight', type=float, default=1)
# memax weight for online session
parser.add_argument('--memax_old_new_weight', type=float, default=2)
parser.add_argument('--memax_old_in_weight', type=float, default=1)
parser.add_argument('--memax_new_in_weight', type=float, default=1)
parser.add_argument('--warmup_teacher_temp', default=0.07, type=float, help='Initial value for the teacher temperature.')
parser.add_argument('--teacher_temp', default=0.04, type=float, help='Final value (after linear warmup) of the teacher temperature.')
#parser.add_argument('--teacher_temp_final', default=0.05, type=float, help='Final value (online session) of the teacher temperature.')
parser.add_argument('--warmup_teacher_temp_epochs', default=30, type=int, help='Number of warmup epochs for the teacher temperature.')
'''clustering-guided initialization'''
parser.add_argument('--init_new_head', action='store_true', default=False)
'''PASS params'''
parser.add_argument('--proto_aug_weight', type=float, default=1.0)
parser.add_argument('--feat_distill_weight', type=float, default=1.0)
parser.add_argument('--radius_scale', type=float, default=1.0)
'''hardness-aware sampling temperature'''
parser.add_argument('--hardness_temp', type=float, default=0.1)
# Continual GCD params
parser.add_argument('--num_old_classes', type=int, default=-1)
parser.add_argument('--prop_train_labels', type=float, default=0.8)
parser.add_argument('--train_session', type=str, default='offline', help='options: offline, online')
parser.add_argument('--load_offline_id', type=str, default=None)
parser.add_argument('--epochs_offline', default=100, type=int)
parser.add_argument('--epochs_online_per_session', default=30, type=int)
parser.add_argument('--continual_session_num', default=4, type=int)
parser.add_argument('--online_novel_unseen_num', default=400, type=int)
parser.add_argument('--online_old_seen_num', default=50, type=int)
parser.add_argument('--online_novel_seen_num', default=50, type=int)
# shuffle dataset classes
parser.add_argument('--shuffle_classes', action='store_true', default=False)
parser.add_argument('--seed', default=0, type=int)
# others
parser.add_argument('--print_freq', default=10, type=int)
parser.add_argument('--exp_name', default='simgcd-pro-v5', type=str)
# ----------------------
# INIT
# ----------------------
args = parser.parse_args()
device = torch.device('cuda:0')
#set_seed(args.seed)
args = get_class_splits(args)
args.num_labeled_classes = len(args.train_classes)
args.num_unlabeled_classes = len(args.unlabeled_classes)
args.exp_root = args.exp_root + '_' + args.train_session
args.exp_name = 'happy' + '-' + args.train_session
if args.train_session == 'offline':
args.base_exp_id = 'Old' + str(args.num_labeled_classes) + '_' + 'Ratio' + str(args.prop_train_labels)
elif args.train_session == 'online':
args.base_exp_id = 'Old' + str(args.num_labeled_classes) + '_' + 'Ratio' + str(args.prop_train_labels) \
+ '_' + 'ContinualNum' + str(args.continual_session_num) + '_' + 'UnseenNum' + str(args.online_novel_unseen_num) \
+ '_' + 'SeenNum' + str(args.online_novel_seen_num)
else:
raise NotImplementedError
init_experiment(args, runner_name=['Happy'])
args.logger.info(f'Using evaluation function {args.eval_funcs[0]} to print results')
# ----------------------
# BASE MODEL
# ----------------------
args.interpolation = 3
args.crop_pct = 0.875
backbone = vits.__dict__['vit_base']()
args.logger.info(f'Loading weights from {dino_pretrain_path}')
state_dict = torch.load(dino_pretrain_path, map_location='cpu')
backbone.load_state_dict(state_dict)
# NOTE: Hardcoded image size as we do not finetune the entire ViT model
args.image_size = 224
args.feat_dim = 768
args.num_mlp_layers = 3
args.mlp_out_dim = args.num_labeled_classes # NOTE!!!
# ----------------------
# HOW MUCH OF BASE MODEL TO FINETUNE
# ----------------------
for m in backbone.parameters():
m.requires_grad = False
# Only finetune layers from block 'args.grad_from_block' onwards
for name, m in backbone.named_parameters():
if 'block' in name:
block_num = int(name.split('.')[1])
if block_num >= args.grad_from_block:
m.requires_grad = True
args.logger.info('model build')
# ----------------------
# PROJECTION HEAD
# ----------------------
projector = DINOHead(in_dim=args.feat_dim, out_dim=args.mlp_out_dim, nlayers=args.num_mlp_layers)
model = nn.Sequential(backbone, projector)
model.to(device)
# --------------------
# CONTRASTIVE TRANSFORM
# --------------------
train_transform, test_transform = get_transform(args.transform, image_size=args.image_size, args=args)
train_transform = ContrastiveLearningViewGenerator(base_transform=train_transform, n_views=args.n_views)
# ----------------------
# 1. OFFLINE TRAIN
# ----------------------
if args.train_session == 'offline':
args.logger.info('========== offline training with labeled old data (old) ==========')
args.logger.info('loading dataset...')
offline_session_train_dataset, offline_session_test_dataset,\
_online_session_train_dataset_list, _online_session_test_dataset_list,\
datasets, dataset_split_config_dict, novel_targets_shuffle = get_datasets(
args.dataset_name, train_transform, test_transform, args)
# saving dataset dict
print('save dataset dict...')
save_dataset_dict_path = os.path.join(args.log_dir, 'offline_dataset_dict.txt')
f_dataset_dict = open(save_dataset_dict_path, 'w')
f_dataset_dict.write('offline_dataset_split_dict: \n')
f_dataset_dict.write(str(dataset_split_config_dict))
f_dataset_dict.write('\nnovel_targets_shuffle: \n')
f_dataset_dict.write(str(novel_targets_shuffle))
f_dataset_dict.close()
offline_session_train_loader = DataLoader(offline_session_train_dataset, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True, drop_last=True, pin_memory=True)
offline_session_test_loader = DataLoader(offline_session_test_dataset, num_workers=args.num_workers_test,
batch_size=256, shuffle=False, pin_memory=False)
# ----------------------
# TRAIN
# ----------------------
train_offline(model, offline_session_train_loader, offline_session_test_loader, args)
# ----------------------
# 2. ONLINE TRAIN
# ----------------------
elif args.train_session == 'online':
args.logger.info('\n\n==================== online continual GCD with unlabeled data (old + novel) ====================')
args.logger.info('loading dataset...')
_offline_session_train_dataset, _offline_session_test_dataset,\
online_session_train_dataset_list, online_session_test_dataset_list,\
datasets, dataset_split_config_dict, novel_targets_shuffle = get_datasets(
args.dataset_name, train_transform, test_transform, args)
# saving dataset dict
print('save dataset dict...')
save_dataset_dict_path = os.path.join(args.log_dir, 'online_dataset_dict.txt')
f_dataset_dict = open(save_dataset_dict_path, 'w')
f_dataset_dict.write('online_dataset_split_dict: \n')
f_dataset_dict.write(str(dataset_split_config_dict))
f_dataset_dict.write('\nnovel_targets_shuffle: \n')
f_dataset_dict.write(str(novel_targets_shuffle))
f_dataset_dict.write('\nnum_novel_class_per_session: \n')
f_dataset_dict.write(str(args.num_unlabeled_classes // args.continual_session_num))
f_dataset_dict.close()
# ----------------------
# CONTINUAL SESSIONS
# ----------------------
args.num_novel_class_per_session = args.num_unlabeled_classes // args.continual_session_num
args.logger.info('number of novel class per session: {}'.format(args.num_novel_class_per_session))
'''v5: ProtoAug Manager'''
proto_aug_manager = ProtoAugManager(args.feat_dim, args.n_views*args.batch_size, args.hardness_temp, args.radius_scale, device, args.logger)
# best test acc list across continual sessions
args.best_test_acc_all_list = []
args.best_test_acc_old_list = []
args.best_test_acc_new_list = []
args.best_test_acc_soft_all_list = []
args.best_test_acc_seen_list = []
args.best_test_acc_unseen_list = []
start_session = 0
'''Continual GCD sessions'''
#for session in range(args.continual_session_num):
for session in range(start_session, args.continual_session_num):
args.logger.info('\n\n========== begin online continual session-{} ==============='.format(session+1))
# dataset for the current session
online_session_train_dataset = online_session_train_dataset_list[session]
online_session_test_dataset = online_session_test_dataset_list[session]
online_session_train_loader = DataLoader(online_session_train_dataset, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True, drop_last=True, pin_memory=True)
online_session_test_loader = DataLoader(online_session_test_dataset, num_workers=args.num_workers_test,
batch_size=256, shuffle=False, pin_memory=False)
# number of seen (offline old + previous online new) classes till the beginning of this session
args.num_seen_classes = args.num_labeled_classes + args.num_novel_class_per_session * session
args.logger.info('number of seen class (old + seen novel) at the beginning of current session: {}'.format(args.num_seen_classes))
if args.dataset_name == 'cifar100':
args.num_cur_novel_classes = len(np.unique(online_session_train_dataset.novel_unlabelled_dataset.targets))
elif args.dataset_name == 'tiny_imagenet':
novel_cls_labels = [t for i, (p, t) in enumerate(online_session_train_dataset.novel_unlabelled_dataset.data)]
args.num_cur_novel_classes = len(np.unique(novel_cls_labels))
elif args.dataset_name == 'aircraft':
novel_cls_labels = [t for i, (p, t) in enumerate(online_session_train_dataset.novel_unlabelled_dataset.samples)]
args.num_cur_novel_classes = len(np.unique(novel_cls_labels))
elif args.dataset_name == 'scars':
args.num_cur_novel_classes = len(np.unique(online_session_train_dataset.novel_unlabelled_dataset.target)) # NOTE!!! target
else:
args.num_cur_novel_classes = args.num_novel_class_per_session * (session+1)
args.logger.info('number of all novel class (seen novel + unseen novel) in current session: {}'.format(args.num_cur_novel_classes))
'''tunable params in backbone'''
####################################################################################################################
# freeze backbone params
for m in backbone.parameters():
m.requires_grad = False
# Only finetune layers from block 'args.grad_from_block' onwards
for name, m in backbone.named_parameters():
if 'block' in name:
block_num = int(name.split('.')[1])
if block_num >= args.grad_from_block:
m.requires_grad = True
####################################################################################################################
'''load ckpts from last session (session>0) or offline session (session=0)'''
####################################################################################################################
args.logger.info('loading checkpoints of model_pre...')
if session == 0:
projector_pre = DINOHead(in_dim=args.feat_dim, out_dim=args.num_labeled_classes, nlayers=args.num_mlp_layers)
model_pre = nn.Sequential(backbone, projector_pre)
if args.load_offline_id is not None:
load_dir_online = os.path.join(exp_root_happy + '_' + 'offline', args.dataset_name, args.load_offline_id, 'checkpoints', 'model_best.pt')
args.logger.info('loading offline checkpoints from: ' + load_dir_online)
load_dict = torch.load(load_dir_online)
model_pre.load_state_dict(load_dict['model'])
args.logger.info('successfully loaded checkpoints!')
else: # session > 0:
projector_pre = DINOHead(in_dim=args.feat_dim, out_dim=args.num_seen_classes, nlayers=args.num_mlp_layers)
model_pre = nn.Sequential(backbone, projector_pre)
load_dir_online = args.model_path[:-3] + '_session-' + str(session) + f'_best.pt' # NOTE!!! session, best
args.logger.info('loading checkpoints from last online session: ' + load_dir_online)
load_dict = torch.load(load_dir_online)
model_pre.load_state_dict(load_dict['model'])
args.logger.info('successfully loaded checkpoints!')
####################################################################################################################
'''incremental parametric classifier in SimGCD'''
####################################################################################################################
####################################################################################################################
backbone_cur = deepcopy(backbone) # NOTE!!!
backbone_cur.load_state_dict(model_pre[0].state_dict()) # NOTE!!!
args.mlp_out_dim_cur = args.num_labeled_classes + args.num_cur_novel_classes # total num of classes in the current session
args.logger.info('number of all class (old + all new) in current session: {}'.format(args.mlp_out_dim_cur))
projector_cur = DINOHead(in_dim=args.feat_dim, out_dim=args.mlp_out_dim_cur, nlayers=args.num_mlp_layers)
args.logger.info('transferring classification head of seen classes...')
projector_cur.last_layer.weight_v.data[:args.num_seen_classes] = projector_pre.last_layer.weight_v.data[:args.num_seen_classes] # NOTE!!!
projector_cur.last_layer.weight_g.data[:args.num_seen_classes] = projector_pre.last_layer.weight_g.data[:args.num_seen_classes] # NOTE!!!
projector_cur.last_layer.weight.data[:args.num_seen_classes] = projector_pre.last_layer.weight.data[:args.num_seen_classes] # NOTE!!!
# initialize new class heads
#############################################
online_session_train_dataset_for_new_head_init = deepcopy(online_session_train_dataset)
online_session_train_dataset_for_new_head_init.old_unlabelled_dataset.transform = test_transform # NOTE!!!
online_session_train_dataset_for_new_head_init.novel_unlabelled_dataset.transform = test_transform # NOTE!!!
online_session_train_loader_for_new_head_init = DataLoader(online_session_train_dataset_for_new_head_init, num_workers=args.num_workers_test,
batch_size=256, shuffle=False, pin_memory=False)
if args.init_new_head:
new_head = get_kmeans_centroid_for_new_head(model_pre, online_session_train_loader_for_new_head_init, args, device) # torch.Size([10, 768])
norm_new_head_weight_v = torch.norm(projector_cur.last_layer.weight_v.data[args.num_seen_classes:], dim=-1).mean()
norm_new_head_weight = torch.norm(projector_cur.last_layer.weight.data[args.num_seen_classes:], dim=-1).mean()
new_head_weight_v = new_head * norm_new_head_weight_v
new_head_weight = new_head * norm_new_head_weight
args.logger.info('initializing classification head of unseen novel classes...')
projector_cur.last_layer.weight_v.data[args.num_seen_classes:] = new_head_weight_v.data # NOTE!!! # copy
projector_cur.last_layer.weight.data[args.num_seen_classes:] = new_head_weight.data # NOTE!!!
##############################################
model_cur = nn.Sequential(backbone_cur, projector_cur) # NOTE!!! backbone_cur
args.logger.info('incremental classifier heads from {} to {}'.format(len(model_pre[1].last_layer.weight_v), len(model_cur[1].last_layer.weight_v)))
model_cur.to(device)
####################################################################################################################
####################################################################################################################
'''compute prototypes offline (session = 0)'''
if session == 0:
args.logger.info('Before Train: compute offline prototypes and radius from {} classes with the best model...'.format(args.num_labeled_classes))
offline_session_train_dataset_for_proto_aug = deepcopy(_offline_session_train_dataset)
offline_session_train_dataset_for_proto_aug.transform = test_transform
offline_session_train_loader_for_proto_aug = DataLoader(offline_session_train_dataset_for_proto_aug, num_workers=args.num_workers_test,
batch_size=256, shuffle=False, pin_memory=False)
# NOTE!!! use model_pre && offline_session_train_loader
proto_aug_manager.update_prototypes_offline(model_pre, offline_session_train_loader_for_proto_aug, args.num_labeled_classes)
save_path = os.path.join(args.model_dir, 'ProtoAugDict' + '_offline' + f'.pt')
args.logger.info('Saving ProtoAugDict to {}.'.format(save_path))
proto_aug_manager.save_proto_aug_dict(save_path)
# ----------------------
# TRAIN
# ----------------------
train_online(model_cur, model_pre, proto_aug_manager, online_session_train_loader, online_session_test_loader, session+1, args)
'''compute prototypes online after train (session > 0)'''
#############################################################################################################
args.logger.info('After Train: update online prototypes from {} to {} classes with the best model...'.format(args.num_seen_classes, args.num_labeled_classes + args.num_cur_novel_classes))
# NOTE!!! use model_cur_best && online_session_train_loader
load_dir_online_best = args.model_path[:-3] + '_session-' + str(session+1) + f'_best.pt' # NOTE!!! session, best
args.logger.info('loading best checkpoints current online session: ' + load_dir_online_best)
load_dict = torch.load(load_dir_online_best)
model_cur.load_state_dict(load_dict['model'])
proto_aug_manager.update_prototypes_online(model_cur, online_session_train_loader_for_new_head_init,
args.num_seen_classes, args.num_labeled_classes + args.num_cur_novel_classes)
save_path = os.path.join(args.model_dir, 'ProtoAugDict' + '_session-' + str(session+1) + f'.pt')
args.logger.info('Saving ProtoAugDict to {}.'.format(save_path))
proto_aug_manager.save_proto_aug_dict(save_path)
'''save results dict after each session'''
best_acc_list_dict = {
'best_test_acc_all_list': args.best_test_acc_all_list,
'best_test_acc_old_list': args.best_test_acc_old_list,
'best_test_acc_new_list': args.best_test_acc_new_list,
'best_test_acc_soft_all_list': args.best_test_acc_soft_all_list,
'best_test_acc_seen_list': args.best_test_acc_seen_list,
'best_test_acc_unseen_list': args.best_test_acc_unseen_list,
}
save_results_path = os.path.join(args.model_dir, 'best_acc_list' + '_session-' + str(session+1) + f'.pt')
args.logger.info('Saving results (best acc list) to {}.'.format(save_results_path))
torch.save(best_acc_list_dict, save_results_path)
# print final results
args.logger.info('\n\n==================== print final results over {} continual sessions ===================='.format(args.continual_session_num))
for session in range(args.continual_session_num):
args.logger.info(f'Session-{session+1}: All (Hard): {args.best_test_acc_all_list[session]:.4f} Old: {args.best_test_acc_old_list[session]:.4f} New: {args.best_test_acc_new_list[session]:.4f} | All (Soft): {args.best_test_acc_soft_all_list[session]:.4f} Seen: {args.best_test_acc_seen_list[session]:.4f} Unseen: {args.best_test_acc_unseen_list[session]:.4f}')
for session in range(args.continual_session_num):
print(f'Session-{session+1}: All (Hard): {args.best_test_acc_all_list[session]:.4f} Old: {args.best_test_acc_old_list[session]:.4f} New: {args.best_test_acc_new_list[session]:.4f} | All (Soft): {args.best_test_acc_soft_all_list[session]:.4f} Seen: {args.best_test_acc_seen_list[session]:.4f} Unseen: {args.best_test_acc_unseen_list[session]:.4f}')
else:
raise NotImplementedError