-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detector.py
executable file
·65 lines (47 loc) · 1.89 KB
/
face_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import cv2 as cv
import tensorflow as tf
from keras.models import Sequential, load_model
class FaceDetector:
def __init__(self, age_estimator_model: str | None = None) -> None:
self.face_detector = cv.CascadeClassifier(
cv.data.haarcascades + "haarcascade_frontalface_alt.xml"
)
self.age_estimator: Sequential | None = load_model(age_estimator_model) if age_estimator_model else None
def detect_face(self, img: cv.typing.MatLike, draw: bool = True) -> list[
cv.typing.MatLike, list[list[int, int, int, int]]]:
bboxs: list[list[int, int, int, int]] = []
result_img = img.copy()
frame_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
faces = self.face_detector.detectMultiScale(frame_gray, 1.3)
for face in faces:
x, y, w, h = face
x, w = x - 20, w + 20
y, h = y - 20, h + 50
bboxs.append((x, y, w + x, h + y))
if draw:
result_img = FaceDetector.draw(img.copy(), (x, y, w + x, h + y))
return result_img, bboxs
def estimate_age(self, img: cv.typing.MatLike) -> float:
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
img = cv.resize(img, (124, 124))
img = img / 255.
img = img[tf.newaxis, ...]
prediction = self.age_estimator.predict(img)
return round(float(prediction[0][0]), 2)
@staticmethod
def draw(img, bbox) -> cv.typing.MatLike:
x1, y1, x2, y2 = bbox
img = cv.rectangle(
img, (x1, y1), (x2, y2), (255, 0, 255), 2)
return img
if __name__ == '__main__':
detector = FaceDetector()
cap = cv.VideoCapture(0)
while True:
frame = cap.read()[1]
frame, bboxs = detector.detect_face(frame, draw=True)
print(f'{bboxs = }')
cv.imshow('webcam', frame)
if cv.waitKey(1) & 0xFF == 27:
break
cap.release()