-
Notifications
You must be signed in to change notification settings - Fork 1
/
export_keras.py
494 lines (470 loc) · 23.4 KB
/
export_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import argparse
import logging
import os
import sys
import traceback
from copy import deepcopy
from pathlib import Path
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import numpy as np
#import tensorflow as tf
import torch
import torch.nn as nn
import yaml
#from tensorflow import keras
#from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
#from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, autopad, C3
from models.experimental import attempt_load#, MixConv2d, CrossConv
#from models.yolo import Detect
#from utils.datasets import LoadImages
from utils.general import make_divisible, check_file, check_dataset
#from utils.google_utils import attempt_download
logger = logging.getLogger(__name__)
#class tf_BN(keras.layers.Layer):
# # TensorFlow BatchNormalization wrapper
# def __init__(self, w=None):
# super(tf_BN, self).__init__()
# self.bn = keras.layers.BatchNormalization(
# beta_initializer=keras.initializers.Constant(w.bias.numpy()),
# gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
# moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
# moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
# epsilon=w.eps)
#
# def call(self, inputs):
# return self.bn(inputs)
#
#
#class tf_Pad(keras.layers.Layer):
# def __init__(self, pad):
# super(tf_Pad, self).__init__()
# self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
#
# def call(self, inputs):
# return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
#
#
#class tf_Conv(keras.layers.Layer):
# # Standard convolution
# def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
# # ch_in, ch_out, weights, kernel, stride, padding, groups
# super(tf_Conv, self).__init__()
# assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
# assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
# # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
# # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
#
# conv = keras.layers.Conv2D(
# c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False,
# kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()))
# self.conv = conv if s == 1 else keras.Sequential([tf_Pad(autopad(k, p)), conv])
# self.bn = tf_BN(w.bn) if hasattr(w, 'bn') else tf.identity
#
# # YOLOv5 activations
# if isinstance(w.act, nn.LeakyReLU):
# self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
# elif isinstance(w.act, nn.Hardswish):
# self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
# elif isinstance(w.act, nn.SiLU):
# self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
#
# def call(self, inputs):
# return self.act(self.bn(self.conv(inputs)))
#
#
#class tf_Focus(keras.layers.Layer):
# # Focus wh information into c-space
# def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
# # ch_in, ch_out, kernel, stride, padding, groups
# super(tf_Focus, self).__init__()
# self.conv = tf_Conv(c1 * 4, c2, k, s, p, g, act, w.conv)
#
# def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
# # inputs = inputs / 255. # normalize 0-255 to 0-1
# return self.conv(tf.concat([inputs[:, ::2, ::2, :],
# inputs[:, 1::2, ::2, :],
# inputs[:, ::2, 1::2, :],
# inputs[:, 1::2, 1::2, :]], 3))
#
#
#class tf_Bottleneck(keras.layers.Layer):
# # Standard bottleneck
# def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
# super(tf_Bottleneck, self).__init__()
# c_ = int(c2 * e) # hidden channels
# self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
# self.cv2 = tf_Conv(c_, c2, 3, 1, g=g, w=w.cv2)
# self.add = shortcut and c1 == c2
#
# def call(self, inputs):
# return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
#
#
#class tf_Conv2d(keras.layers.Layer):
# # Substitution for PyTorch nn.Conv2D
# def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
# super(tf_Conv2d, self).__init__()
# assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
# self.conv = keras.layers.Conv2D(
# c2, k, s, 'VALID', use_bias=bias,
# kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
# bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
#
# def call(self, inputs):
# return self.conv(inputs)
#
#
#class tf_BottleneckCSP(keras.layers.Layer):
# # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
# def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
# # ch_in, ch_out, number, shortcut, groups, expansion
# super(tf_BottleneckCSP, self).__init__()
# c_ = int(c2 * e) # hidden channels
# self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
# self.cv2 = tf_Conv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
# self.cv3 = tf_Conv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
# self.cv4 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv4)
# self.bn = tf_BN(w.bn)
# self.act = lambda x: keras.activations.relu(x, alpha=0.1)
# self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
#
# def call(self, inputs):
# y1 = self.cv3(self.m(self.cv1(inputs)))
# y2 = self.cv2(inputs)
# return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
#
#
#class tf_C3(keras.layers.Layer):
# # CSP Bottleneck with 3 convolutions
# def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
# # ch_in, ch_out, number, shortcut, groups, expansion
# super(tf_C3, self).__init__()
# c_ = int(c2 * e) # hidden channels
# self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
# self.cv2 = tf_Conv(c1, c_, 1, 1, w=w.cv2)
# self.cv3 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv3)
# self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
#
# def call(self, inputs):
# return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
#
#
#class tf_SPP(keras.layers.Layer):
# # Spatial pyramid pooling layer used in YOLOv3-SPP
# def __init__(self, c1, c2, k=(5, 9, 13), w=None):
# super(tf_SPP, self).__init__()
# c_ = c1 // 2 # hidden channels
# self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
# self.cv2 = tf_Conv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
# self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
#
# def call(self, inputs):
# x = self.cv1(inputs)
# return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
#
#
#class tf_Detect(keras.layers.Layer):
# def __init__(self, nc=80, anchors=(), ch=(), w=None): # detection layer
# super(tf_Detect, self).__init__()
# self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
# self.nc = nc # number of classes
# self.no = nc + 5 # number of outputs per anchor
# self.nl = len(anchors) # number of detection layers
# self.na = len(anchors[0]) // 2 # number of anchors
# self.grid = [tf.zeros(1)] * self.nl # init grid
# self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
# self.anchor_grid = tf.reshape(tf.convert_to_tensor(w.anchor_grid.numpy(), dtype=tf.float32),
# [self.nl, 1, -1, 1, 2])
# self.m = [tf_Conv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
# self.export = False # onnx export
# self.training = True # set to False after building model
# for i in range(self.nl):
# ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i]
# self.grid[i] = self._make_grid(nx, ny)
#
# def call(self, inputs):
# # x = x.copy() # for profiling
# z = [] # inference output
# self.training |= self.export
# x = []
# for i in range(self.nl):
# x.append(self.m[i](inputs[i]))
# # x(bs,20,20,255) to x(bs,3,20,20,85)
# ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i]
# x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
#
# if not self.training: # inference
# y = tf.sigmoid(x[i])
# xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
# wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
# # Normalize xywh to 0-1 to reduce calibration error
# xy /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32)
# wh /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32)
# y = tf.concat([xy, wh, y[..., 4:]], -1)
# z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
#
# return x if self.training else (tf.concat(z, 1), x)
#
# @staticmethod
# def _make_grid(nx=20, ny=20):
# # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
# # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
# xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
# return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
#
#
#class tf_Upsample(keras.layers.Layer):
# def __init__(self, size, scale_factor, mode, w=None):
# super(tf_Upsample, self).__init__()
# assert scale_factor == 2, "scale_factor must be 2"
# # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
# if opt.tf_raw_resize:
# # with default arguments: align_corners=False, half_pixel_centers=False
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
# size=(x.shape[1] * 2, x.shape[2] * 2))
# else:
# self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
#
# def call(self, inputs):
# return self.upsample(inputs)
#
#
#class tf_Concat(keras.layers.Layer):
# def __init__(self, dimension=1, w=None):
# super(tf_Concat, self).__init__()
# assert dimension == 1, "convert only NCHW to NHWC concat"
# self.d = 3
#
# def call(self, inputs):
# return tf.concat(inputs, self.d)
#
#
#def parse_model(d, ch, model): # model_dict, input_channels(3)
# logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
# anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
# na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
# no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
#
# layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
# for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
# m_str = m
# m = eval(m) if isinstance(m, str) else m # eval strings
# for j, a in enumerate(args):
# try:
# args[j] = eval(a) if isinstance(a, str) else a # eval strings
# except:
# pass
#
# n = max(round(n * gd), 1) if n > 1 else n # depth gain
# if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
# c1, c2 = ch[f], args[0]
# c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
#
# args = [c1, c2, *args[1:]]
# if m in [BottleneckCSP, C3]:
# args.insert(2, n)
# n = 1
# elif m is nn.BatchNorm2d:
# args = [ch[f]]
# elif m is Concat:
# c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
# elif m is Detect:
# args.append([ch[x + 1] for x in f])
# if isinstance(args[1], int): # number of anchors
# args[1] = [list(range(args[1] * 2))] * len(f)
# else:
# c2 = ch[f]
#
# tf_m = eval('tf_' + m_str.replace('nn.', ''))
# m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
# else tf_m(*args, w=model.model[i]) # module
#
# torch_m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
# t = str(m)[8:-2].replace('__main__.', '') # module type
# np = sum([x.numel() for x in torch_m_.parameters()]) # number params
# m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
# logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
# save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
# layers.append(m_)
# ch.append(c2)
# return keras.Sequential(layers), sorted(save)
#
#
#class tf_Model():
# def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None): # model, input channels, number of classes
# super(tf_Model, self).__init__()
# if isinstance(cfg, dict):
# self.yaml = cfg # model dict
# else: # is *.yaml
# import yaml # for torch hub
# self.yaml_file = Path(cfg).name
# with open(cfg) as f:
# self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
#
# # Define model
# if nc and nc != self.yaml['nc']:
# print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
# self.yaml['nc'] = nc # override yaml value
# self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model) # model, savelist, ch_out
#
# def predict(self, inputs, profile=False):
# y = [] # outputs
# x = inputs
# for i, m in enumerate(self.model.layers):
# if m.f != -1: # if not from previous layer
# x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
#
# x = m(x) # run
# y.append(x if m.i in self.savelist else None) # save output
#
# # Add TensorFlow NMS
# if opt.tf_nms:
# boxes = tf.expand_dims(xywh2xyxy(x[0][..., :4]), 2)
# probs = x[0][:, :, 4:5]
# classes = x[0][:, :, 5:]
# scores = probs * classes
# nms = tf.image.combined_non_max_suppression(
# boxes, scores, opt.topk_per_class, opt.topk_all, opt.iou_thres, opt.score_thres, clip_boxes=False)
# return nms, x[1]
#
# return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
# # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
# # xywh = x[..., :4] # x(6300,4) boxes
# # conf = x[..., 4:5] # x(6300,1) confidences
# # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
# # return tf.concat([conf, cls, xywh], 1)
#
#
#def xywh2xyxy(xywh):
# # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
# x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
# return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
#
#
#def representative_dataset_gen():
# # Representative dataset for use with converter.representative_dataset
# n = 0
# for path, img, im0s, vid_cap in dataset:
# # Get sample input data as a numpy array in a method of your choosing.
# n += 1
# input = np.transpose(img, [1, 2, 0])
# input = np.expand_dims(input, axis=0).astype(np.float32)
# input /= 255.0
# yield [input]
# if n >= opt.ncalib:
# break
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='cfg path')
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
#parser.add_argument('--dynamic-batch-size', action='store_true', help='dynamic batch size')
#parser.add_argument('--source', type=str, default='../data/coco128.yaml', help='dir of images or data.yaml file')
#parser.add_argument('--ncalib', type=int, default=100, help='number of calibration images')
#parser.add_argument('--tfl-int8', action='store_true', dest='tfl_int8', help='export TFLite int8 model')
#parser.add_argument('--tf-nms', action='store_true', dest='tf_nms', help='TF NMS (without TFLite export)')
#parser.add_argument('--tf-raw-resize', action='store_true', dest='tf_raw_resize',
# help='use tf.raw_ops.ResizeNearestNeighbor for resize')
#parser.add_argument('--topk-per-class', type=int, default=100, help='topk per class to keep in NMS')
#parser.add_argument('--topk-all', type=int, default=100, help='topk for all classes to keep in NMS')
#parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
#parser.add_argument('--score-thres', type=float, default=0.4, help='score threshold for NMS')
opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
# Input
img = torch.zeros((opt.batch_size, 3, *opt.img_size))
# Load PyTorch model
model = attempt_load(opt.weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
model.model[-1].export = False # set Detect() layer export=True
#y = model(img)
#nc = y[0].shape[-1] - 5
## TensorFlow saved_model export
#try:
# print('\nStarting TensorFlow saved_model export with TensorFlow %s...' % tf.__version__)
# tf_model = tf_Model(opt.cfg, model=model, nc=nc)
# img = tf.zeros((opt.batch_size, *opt.img_size, 3)) # NHWC Input for TensorFlow
# m = tf_model.model.layers[-1]
# assert isinstance(m, tf_Detect), "the last layer must be Detect"
# m.training = False
# y = tf_model.predict(img)
# inputs = keras.Input(shape=(*opt.img_size, 3), batch_size=None if opt.dynamic_batch_size else opt.batch_size)
# keras_model = keras.Model(inputs=inputs, outputs=tf_model.predict(inputs))
# keras_model.summary()
# path = opt.weights.replace('.pt', '_saved_model') # filename
# keras_model.save(path, save_format='tf')
# print('TensorFlow saved_model export success, saved as %s' % path)
#except Exception as e:
# print('TensorFlow saved_model export failure: %s' % e)
# traceback.print_exc(file=sys.stdout)
## TensorFlow GraphDef export
#try:
# print('\nStarting TensorFlow GraphDef export with TensorFlow %s...' % tf.__version__)
# # https://github.com/leimao/Frozen_Graph_TensorFlow
# full_model = tf.function(lambda x: keras_model(x))
# full_model = full_model.get_concrete_function(
# tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
# frozen_func = convert_variables_to_constants_v2(full_model)
# frozen_func.graph.as_graph_def()
# f = opt.weights.replace('.pt', '.pb') # filename
# tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
# logdir=os.path.dirname(f),
# name=os.path.basename(f),
# as_text=False)
# print('TensorFlow GraphDef export success, saved as %s' % f)
#except Exception as e:
# print('TensorFlow GraphDef export failure: %s' % e)
# traceback.print_exc(file=sys.stdout)
## TFLite model export
#if not opt.tf_nms:
# try:
# print('\nStarting TFLite export with TensorFlow %s...' % tf.__version__)
# # fp32 TFLite model export ---------------------------------------------------------------------------------
# # converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
# # converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
# # converter.allow_custom_ops = False
# # converter.experimental_new_converter = True
# # tflite_model = converter.convert()
# # f = opt.weights.replace('.pt', '.tflite') # filename
# # open(f, "wb").write(tflite_model)
# # fp16 TFLite model export ---------------------------------------------------------------------------------
# converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
# converter.optimizations = [tf.lite.Optimize.DEFAULT]
# # converter.representative_dataset = representative_dataset_gen
# # converter.target_spec.supported_types = [tf.float16]
# converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
# converter.allow_custom_ops = False
# converter.experimental_new_converter = True
# tflite_model = converter.convert()
# f = opt.weights.replace('.pt', '-fp16.tflite') # filename
# open(f, "wb").write(tflite_model)
# print('\nTFLite export success, saved as %s' % f)
# # int8 TFLite model export ---------------------------------------------------------------------------------
# if opt.tfl_int8:
# # Representative Dataset
# if opt.source.endswith('.yaml'):
# with open(check_file(opt.source)) as f:
# data = yaml.load(f, Loader=yaml.FullLoader) # data dict
# check_dataset(data) # check
# opt.source = data['train']
# dataset = LoadImages(opt.source, img_size=opt.img_size, auto=False)
# converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
# converter.optimizations = [tf.lite.Optimize.DEFAULT]
# converter.representative_dataset = representative_dataset_gen
# converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
# converter.inference_input_type = tf.uint8 # or tf.int8
# converter.inference_output_type = tf.uint8 # or tf.int8
# converter.allow_custom_ops = False
# converter.experimental_new_converter = True
# converter.experimental_new_quantizer = False
# tflite_model = converter.convert()
# f = opt.weights.replace('.pt', '-int8.tflite') # filename
# open(f, "wb").write(tflite_model)
# print('\nTFLite (int8) export success, saved as %s' % f)
# except Exception as e:
# print('\nTFLite export failure: %s' % e)
# traceback.print_exc(file=sys.stdout)