-
Notifications
You must be signed in to change notification settings - Fork 0
/
Problems with Equal temperment.nb
6440 lines (6412 loc) · 372 KB
/
Problems with Equal temperment.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 374248, 6431]
NotebookOptionsPosition[ 373163, 6390]
NotebookOutlinePosition[ 373505, 6405]
CellTagsIndexPosition[ 373462, 6402]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"A", "=", "440"}], ";"}]], "Input",
CellChangeTimes->{{3.6737870503019953`*^9, 3.673787051583686*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Py", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{"n", "/", "12"}], ")"}]}], ",", " ",
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "12"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.6737856831734495`*^9, 3.673785687639124*^9}, {
3.6737857250833507`*^9, 3.6737857283107924`*^9}, {3.673786143013691*^9,
3.673786163743203*^9}, {3.6737871355386767`*^9, 3.6737871853545694`*^9}, {
3.673787834431466*^9, 3.6737878608881173`*^9}, {3.6737884815369453`*^9,
3.6737884820907965`*^9}, {3.673789315266539*^9, 3.673789317099084*^9}, {
3.6737900138468904`*^9, 3.673790014580023*^9}, {3.6737917974971848`*^9,
3.67379180826376*^9}, {3.673794124094701*^9, 3.673794134513829*^9}, {
3.6737943237581167`*^9, 3.6737943240292416`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
SuperscriptBox["2",
RowBox[{"1", "/", "12"}]], ",",
SuperscriptBox["2",
RowBox[{"1", "/", "6"}]], ",",
SuperscriptBox["2",
RowBox[{"1", "/", "4"}]], ",",
SuperscriptBox["2",
RowBox[{"1", "/", "3"}]], ",",
SuperscriptBox["2",
RowBox[{"5", "/", "12"}]], ",",
SqrtBox["2"], ",",
SuperscriptBox["2",
RowBox[{"7", "/", "12"}]], ",",
SuperscriptBox["2",
RowBox[{"2", "/", "3"}]], ",",
SuperscriptBox["2",
RowBox[{"3", "/", "4"}]], ",",
SuperscriptBox["2",
RowBox[{"5", "/", "6"}]], ",",
SuperscriptBox["2",
RowBox[{"11", "/", "12"}]], ",", "2"}], "}"}]], "Output",
CellChangeTimes->{
3.673787037663464*^9, 3.673787241385848*^9, 3.673787861479745*^9,
3.6737884832148*^9, 3.6737893176505365`*^9, {3.6737900023475513`*^9,
3.67379001623291*^9}, 3.673790891652834*^9, 3.673791745631834*^9, {
3.673791808790863*^9, 3.6737918214029937`*^9}, 3.673793861425177*^9,
3.673794023241369*^9, 3.6737941512793813`*^9, {3.67379430120714*^9,
3.673794340416937*^9}}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"f", "[", "a_", "]"}], ":=",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"a", "<", "2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"a", "/", "2"}], ",",
RowBox[{"a", "\[GreaterEqual]", "2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"a", "/", "4"}], ",", " ",
RowBox[{"a", "\[GreaterEqual]", "4"}]}], "}"}]}], "}"}],
"]"}]}]], "Input",
CellChangeTimes->{{3.673791225646488*^9, 3.6737912329612713`*^9}, {
3.6737912992713137`*^9, 3.6737913239245443`*^9}, 3.673794019975146*^9,
3.673794056202109*^9}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Py8", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"1.0", "*",
RowBox[{"Py", "[",
RowBox[{"[", "i", "]"}], "]"}], "*",
RowBox[{"Py", "[",
RowBox[{"[", "8", "]"}], "]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"i", ",", " ", "1", ",", "12"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Py8", "=",
RowBox[{"Map", "[",
RowBox[{"f", " ", ",", " ", "Py8"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Py8", "=",
RowBox[{"Sort", "[", "Py8", "]"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"F", "[", "a_", "]"}], ":=",
RowBox[{"Sort", "[",
RowBox[{"Map", "[",
RowBox[{"f", ",", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"Py", "[",
RowBox[{"[", "i", "]"}], "]"}], "*",
RowBox[{"Py", "[",
RowBox[{"[", "a", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "12"}], "}"}]}], "]"}]}], "]"}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.6737894766004877`*^9, 3.6737895113014717`*^9}, {
3.67378959463764*^9, 3.6737896909616203`*^9}, {3.6737897935505886`*^9,
3.673789834444276*^9}, {3.673790129324795*^9, 3.6737901305604715`*^9}, {
3.6737905736870785`*^9, 3.673790574895856*^9}, {3.673790811496023*^9,
3.6737908128206177`*^9}, {3.6737908455678763`*^9, 3.6737908737449555`*^9}, {
3.673790904996629*^9, 3.6737909466719046`*^9}, {3.67379098553897*^9,
3.6737910314038477`*^9}, {3.6737910918368387`*^9, 3.673791215936494*^9}, {
3.6737913370320883`*^9, 3.673791447223913*^9}, {3.6737916549433317`*^9,
3.6737916571791067`*^9}, {3.673794124180763*^9, 3.673794138952024*^9}, {
3.673794329632511*^9, 3.673794330898704*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1.`", ",", "1.059463094359295`", ",", "1.122462048309373`", ",",
"1.189207115002721`", ",", "1.259921049894873`", ",",
"1.3348398541700341`", ",", "1.414213562373095`", ",",
"1.4983070768766815`", ",", "1.5874010519681994`", ",",
"1.681792830507429`", ",", "1.7817974362806785`", ",",
"1.8877486253633868`"}], "}"}]], "Output",
CellChangeTimes->{{3.6737911760719075`*^9, 3.673791204098486*^9},
3.67379123549191*^9, {3.673791339349798*^9, 3.6737913475354147`*^9}, {
3.6737914341171365`*^9, 3.6737914479245973`*^9}, {3.673791739683837*^9,
3.6737917456609154`*^9}, 3.6737918214366198`*^9, 3.673793861449604*^9,
3.673794023262005*^9, 3.6737941513114*^9, 3.673794301232485*^9,
3.673794340439437*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"1.0", "*",
RowBox[{"F", "[", "7", "]"}]}]], "Input",
CellChangeTimes->{{3.673791637137333*^9, 3.673791641635933*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1.`", ",", "1.0594630943592953`", ",", "1.122462048309373`", ",",
"1.189207115002721`", ",", "1.2599210498948732`", ",",
"1.3348398541700344`", ",", "1.4142135623730951`", ",",
"1.4983070768766815`", ",", "1.5874010519681994`", ",",
"1.681792830507429`", ",", "1.7817974362806785`", ",",
"1.887748625363387`"}], "}"}]], "Output",
CellChangeTimes->{{3.6737916384283075`*^9, 3.6737916422774534`*^9},
3.6737917456764455`*^9, 3.673791821455702*^9, 3.6737938614655294`*^9,
3.6737940232760887`*^9, 3.6737941513249245`*^9, 3.6737943012453995`*^9,
3.67379434045298*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"M", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"1.0", "*",
RowBox[{"F", "[", "i", "]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "12"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"MatrixForm", "[", "%", "]"}]}], "Input",
CellChangeTimes->{{3.673791436196534*^9, 3.673791471523162*^9}, {
3.6737916602833376`*^9, 3.673791678176775*^9}, 3.673791835355645*^9, {
3.6737941242510815`*^9, 3.673794141030447*^9}, {3.673794334008683*^9,
3.673794334119698*^9}}],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"1.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"},
{"2.`", "1.0594630943592953`", "1.122462048309373`",
"1.189207115002721`", "1.2599210498948732`", "1.3348398541700344`",
"1.4142135623730951`", "1.4983070768766815`", "1.5874010519681994`",
"1.681792830507429`", "1.7817974362806785`", "1.887748625363387`"}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.673791436839946*^9, 3.673791472394212*^9},
3.673791678751004*^9, 3.6737917456950097`*^9, {3.6737918214811697`*^9,
3.673791835974362*^9}, 3.6737938614820795`*^9, 3.673794023291135*^9,
3.6737941513389645`*^9, 3.673794301260878*^9, 3.673794340466976*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"DiffM", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"1.0", "*",
RowBox[{"(",
RowBox[{
RowBox[{"F", "[", "i", "]"}], "-",
RowBox[{"F", "[", "1", "]"}]}], ")"}]}], ",", " ",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "12"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"MatrixForm", "[", "%", "]"}], "\[IndentingNewLine]",
RowBox[{"MatrixPlot", "[", "%", "]"}]}], "Input",
CellChangeTimes->{{3.673789056690029*^9, 3.67378907000115*^9}, {
3.6737891020501385`*^9, 3.6737891322605953`*^9}, {3.6737894704814262`*^9,
3.6737894706507893`*^9}, {3.6737915433781977`*^9, 3.6737915473285475`*^9}, {
3.673791585832126*^9, 3.673791602873461*^9}, {3.673791688623949*^9,
3.6737917254598665`*^9}, {3.673791830110033*^9, 3.673791830317586*^9}, {
3.6737941244250956`*^9, 3.6737941431507683`*^9}, {3.6737943361780505`*^9,
3.6737943362810783`*^9}}],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"},
{"1.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`", "0.`",
"0.`", "0.`"}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{
3.6737890705795383`*^9, {3.673789105524338*^9, 3.6737891327001996`*^9},
3.673789169632243*^9, 3.673791547837243*^9, {3.6737915953746967`*^9,
3.6737916032848816`*^9}, {3.6737916941075044`*^9, 3.673791745712562*^9}, {
3.67379182150176*^9, 3.6737918423723755`*^9}, 3.6737938614951267`*^9,
3.6737940233026867`*^9, 3.6737941513537893`*^9, 3.6737943012749195`*^9,
3.6737943404814863`*^9}],
Cell[BoxData[
GraphicsBox[RasterBox[CompressedData["
1:eJxTTMoPSmVmYGDggWIQGwI+2D+sElnn/vCWPQMK+GA/So/So/QoPUqP0qP0
KD1Kj9Kj9Cg9SlOHBgDlggM2
"], {{0, 0}, {12, 12}}, {0, 1}],
Frame->True,
FrameLabel->{None, None},
FrameTicks->{{{{11.5,
FormBox["1", TraditionalForm]}, {7.5,
FormBox["5", TraditionalForm]}, {0.5,
FormBox["12", TraditionalForm]}}, {{11.5,
FormBox["1", TraditionalForm]}, {7.5,
FormBox["5", TraditionalForm]}, {0.5,
FormBox["12", TraditionalForm]}}}, {{{0.5,
FormBox["1", TraditionalForm]}, {4.5,
FormBox["5", TraditionalForm]}, {11.5,
FormBox["12", TraditionalForm]}}, {{0.5,
FormBox["1", TraditionalForm]}, {4.5,
FormBox["5", TraditionalForm]}, {11.5,
FormBox["12", TraditionalForm]}}}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
"DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02],
"RangePadding" -> Scaled[0.05]}]], "Output",
CellChangeTimes->{
3.6737890705795383`*^9, {3.673789105524338*^9, 3.6737891327001996`*^9},
3.673789169632243*^9, 3.673791547837243*^9, {3.6737915953746967`*^9,
3.6737916032848816`*^9}, {3.6737916941075044`*^9, 3.673791745712562*^9}, {
3.67379182150176*^9, 3.6737918423723755`*^9}, 3.6737938614951267`*^9,
3.6737940233026867`*^9, 3.6737941513537893`*^9, 3.6737943012749195`*^9,
3.673794340525997*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Sin", "[",
RowBox[{
RowBox[{
RowBox[{"F", "[", "1", "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}], "*", "2", "*", "Pi", "*", "t"}],
"]"}], "+",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{
RowBox[{"F", "[", "1", "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}], "*", "2", "*", "Pi", "*", "t"}],
"]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "0", ",", " ",
RowBox[{"30", "/",
RowBox[{"(",
RowBox[{"2", "*", "Pi"}], ")"}]}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "12"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6737937957846627`*^9, 3.673793909871028*^9}, {
3.6737939572436514`*^9, 3.673793963274165*^9}, {3.673794040016656*^9,
3.673794042672476*^9}, {3.673794124444626*^9, 3.6737941479407516`*^9}, {
3.6737941852347617`*^9, 3.6737941889291525`*^9}, {3.673794363318569*^9,
3.6737943642330503`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwU2nk4VN8bAHD7MgxDUqHskbSIJOQ9FClUIpUQ0r5RUflGqVCRJJVKQlpI
RJEtx57sa5Fd9p2xzXp/9/fXPO9z5573nPece+75zDPK7hf3H+fj4eGJEeDh
+f/nqyXpe1Zr+po87PhVohbyzeS1WnHzBe5B6Fyazd3QEgFbg30CDbknwWtR
JL7hTzwEG+xzVuJehcGWq3zjv9NhvdS2XUu4wVDxn8q7mMYiCPDTxeLc52DE
6H0UWtYAn76u9xXlfgC3L5N+oRG9wORr+cT48RHSqr6ZvFL5B5b7AzqG/RJh
RVRlM6T/g4GpRlTBSQJKdehSk7o+UFp/XTiE8xlGLyzdnSU0CFZNbruDuGkg
xcv5vOA4CgV7kv8Ic7/DJdeexenSaXhYEXFd+kQWiPfYmn8SnQFHi+vyK2uy
IODJW/qE9QzMbrM4uikmG8bagmMkGmZAY133gJNJLlDum83f/E2HMDGZ+TT/
fAgf+Hg3t2wOHIOZz/MG8mFZu9hue7550ODv2fpzD4Y90WKhztvmwZXz2+SC
ZAFMrioOzE2bB+bs29t3ugog94ae0o0nC7C+bxsl5WYRLO0bX9K4lQEyKjpH
vn4tgoKtb+/9PMsA1lG15KxBsm69tw1lXzOgvI2yp3hvMVz0mrH7wWGAW+Of
xy2KJXCUfwjRvjPBUqqyt8OuBGTlxzy+/WPC+r35uv+CS+DM0eZNiZIsYFYk
NI9PloD15UMOt46zILLIawV/QSkMLZy6WSbCBl+e42dEZkvB+OevZ/Ub2OBm
ciiXqlkGOn+u9qo5sGF9jonz8vAyYGjW68bGsqE8TSxunetP2OuzEFGrzYGU
Se70psif8PnsWx6+PRx4um7GzKD8J0Q7+h7yvsAB98SWPrON5VApqOkn/5kD
rNh3mod4foF6elvSXmUuCOgEzI1s/AXpcblCnw25IF7oVOTn9gui7/0JdrHj
wqqeJU5vi35Bu6RkVe5tLqz2mtTUp5PXJ/oDTrzgwgbeyrly1QpwMPY2O5bK
BaR8+9HE3QrQG35N39fKBcs0Z6eAjAp4n946h8a5YGu6dY3MQAVUUpavDuAh
wN1tqmjrzkoIPVrkMqVGwJnpykdVVythPE48apU+AZcDPjgd/VhJrkc5t1cW
BNyNc5m/K1oFuyeDNtw8TkCojmHxMsMqcBXZFdh/mYCnhUvDk85UQd7al2Iv
AgiIsZ122vaqCqL7nl55EUbA+56qNXWVVVAusN9n4CUBKV4f593ZVVBq2V1x
8z0B33nvFs9pV8PJ/r0bj6cRUK5s5CwfVg2jwuKGS0oJqEuT1UrJr4at1KsX
2qoJaDWdmUeT1SA5wNc00UxAb311caNiDSjYlhnbdBAw4pYYfmJfDexmtPvP
/yNgZvquM+NWDfQfO3VlZJgAVoCrVmhaDQz8DGdpThIgIG28sKq3Bg7UBM6n
0QkQj19WkiZdCzVGN60CFwiQ2UQP37G9FsTv/OiLZxKwsqjG+c/lWniCHnyh
cAhYvT9J60xCLbi+MYjL4xKwvjdwgd1UC+/fq3/OIghQyN7Y+5OvDqI8s2q4
ZKwUEGMpJV8HxrvdBR6Rsdou8VRH3TqwyIvZd5q8X1PKd2mCVR3M36BnP2QT
oN06+N/4sToQt5razWYQsDHuQK/+jTrITFsvnTFPgN7pYstbkXXwOMNWJWuG
gK06Oqm/kusg54xghOAEASaMmKVLSuug7zL3v9dDBJgVit9w6qiDB2cY3Ju9
BFjc9+19N1cH2htztn1uI2C37ZDlJLUe0jXFjqo3EbBnhUOqwep66HTOezhU
ScD+nuKlt03qYSwkfnG+iACHRJ0blQ714LDsWcO+bAKOeL3plblYD0WjXvvn
Uwhw3Urd5RJcD5o7pL8OviXAg/e/1A9v6mGzk52uehQB5x473DCsq4fHFkrx
gf4EeB4u6b0zVA/jjw+qJHoS4K28aVc1TwMM7b/Tv8KdAP80qqyrTgN4vS+5
02dGwKP6ktTAiAb4TzZrtSabC/FBpkoHkhqAYZlZpzLMhW9G+eFqRQ2wZPT7
kyvNXPj77rtX8XQDcOiBsorJ5PPlm6TLa9sIrxXPfYu25cLWDRoJdacawV71
QLrTVi5Y972Vib3VCNxrWfevKnHBa8/rOZMvjfDlUcQQHuNAnkr49xuSTZB3
foPaJz8O1P4R17TWaILXCYURtq4c6A29HyUPTSBzouzGQTMOCC/cvp5zoQm2
6JccuCvAgf2V3kaL1U2wpGZN+5UANgxdPoIvhzbDGPWpyX4XFrA0WzZsT2iG
LVoZ93ZsYYFEp32sdF4zvLu0XSGe3O90LfcEpI02Qz2vfGB8PhP8FUy3T+7+
DTtf3GysW8oEmdLVP8+I/oE1TPaatMRF0PB9u8VQ+Q8oPrpmX3J9EQw3KH0U
3foHhhhBhba7FuHoixX3P576Awc2y93vGliApPPiVgM//4DQycTLffILgGRn
atyCWiAnvaTj/oU5cEJfezbHtkCDxfYi/k1zcO3MlVnRnBZweCZ6dG52Fr7k
z69IH2+Bq17yg+bXZ0H5JMuD70ArDN89N/vzPzrwZQmw4lX/AudXy6es09NQ
eniZRl9BG9DW675xHBmG3a+Nb55gdcJVzuH7qQ9+wdWp6b0BS7pARSwkPGbD
T0jY/kEpem0XDK3djMWaSoA7LFVUf6QLigjW8afyBfBVf1BgW14XrNcZvuL6
KgkkhixL75t0w6RU5/Po0Cx8LYC+25Xohq6aXVYHh1uwxNo9X8+L9cDGJNbF
9dJ/8bumj/L/LeuBjx7SkZcN23CDhsvY0w09wK8mP73ufgdeV1P+sPJoD8w/
F9h4ULIH98rF1OkX9MCFDVWESkQ/tv5m6UAN6IWLj2TuCm6ZwCejSiVXhvVC
d3hU8P6fE/j2DbNf2q964VTtF/lmh0mcvcPY2DqjF1rXpq7M3DqFVzdvUAkZ
7gXeJNctJrbTmHdedkJk/z9o1XUj7pyhY4W/Tz4sP/oPttj2j978RMcG+TQ3
zXP/IGj/luvMUTq+EERp2hn0D8wlrVo9zs7idlludlDOP9i5xEi159gcztzS
Hyig2gcr5WIUlhku4Hp5d5DZ2AelFZtnt11awGNE56Lqtj7ojtN7VpG4gFXL
W85uP9gH2yeYwZLLFnH4oSrb2yF9sEcvTkt5ZBF/Mt4lFhHVBzmtI6Z7VzJw
mVJZSdy7PjDZm63VspeBOUN4SyHuA68lydvn0hn4zPWvK3lm+yDv8/edW72Y
ONB54x9J3n6oTbp2W+4NE8eafg5XlOiHntD976yrmPiP6Ad+0OwHr5Aavjdq
LLzj5cthP6d+iNcLy2qvYmHF3IAMVkk/2NNtteuYbFy0VOhKTX0/eNe4xb9R
4GAPzweb4jr7YXmWSEjmNg5OUn+SarHYD64Nb7y++3GwXnhC4uO1A3AnL7tk
cpaDf49onvIwGIDegDPdfTQuvm7+efUW8wE4LbDGXV6bi/OZGW/bXQbgFJ/f
yC5XLrY8/vO1RsQALGs+ceQV5uIRbOXEjBkA2O3beL+Zix/K1clVfxqAw8e5
Dd9GuLihtuX5pdIB+PPgvH2+NIGvaDk7mDcMQELQvZZX6gReFtgjs7xrAJC9
79DXLQR2Mhx5/GNxAGzc5vsfHyYwN/LCvnDBQcitrmY7nCZw3OSMxDHpQeBk
ys/YXyPwjt1XqzcrDsK6+OYTIUEEHkhghYhoD0JkbQ8P8wmB7xE3d7cZDEK/
94qzsbEEXusoIJpiPgh8nbsP+CcT2FOSGmR3dBAEtiUGdBUSWPrM4x2rz5H5
3G2M3SsJnFGylJ9xbRAU+DtOyjcR+JDiy8LKwEF4u1SsmtJOYOb1VbdiIgbB
OuP+1o3/CBzdFG/i9WYQ/I+K3QoZJjBs0OBsTx6ELUt2XFOYJHDv/U+5stmD
cHvfCLeXTuC7fRt8h0sHYcPi97nOBQKvhm8GeQ2DkCV2djuNReBfLwwWwroG
4bhNWaMPh8DnZvMy3MYGIarg8XNpgsASe02v6DEGwZzy6u4/Mk5LLN0kLDQE
r9Iyng6Tsb3A7ulW6SGoQbkVamQ871KTmqw4BKIWIZpPyfZeZO+/cFN7CEL1
xLINyXzGMn+0928dgkn11SFLFwnceeHIqJrFEIT9V5WuPkvggF9diQv7h0DZ
lW55lhyPmprHqYqjQxC8JvLsADneMv+h1a/PDUHxy0/bnpP1ON16rv/i9SFY
LbR10I+sl7je9FuzoCGo3Lvt6Uuynilh3u5LnwzBzrrs6+NkvfcNM5SG3gxB
3LLUSp8iAtO3+3flJA9Barj8T/0sAj+L4Yt5mD0EWQLM5HWfCWzACHJyLSP7
T0DxkTgC/7UTk9dtHAIemXb7wkgC+6U8ahXsHoIBnm9pLsEELjoW5fCJMQR9
xj7qZmcIPN4geyVOcBgqV2tnvT5C4OVmTx8/lxoGliOPnbU1gS8oRVTdWTMM
iynf5t+uJev1iDZyffMw1MlmfbWRI3AJN0zY03QYPK4q9FiJEFiuI8TM6fAw
DJ4WWrWzl4vNrSmu+48Pw6yjKbGjhos9c+/5WXoNg77/9tmobC4uexGYpXd/
GCbjXfp3hHHxZYeb66nZw2AdoGGWs4GLY0o5Vvylw3AlYaWQjywXV+jdOM2o
Gwbmk9zGEDYHKy25ntA/NAxH3lpU/izj4KraS3L5y0egzbjn82M7DlbbdULo
4rURON2+7w97DxvvzepTPX53BD46rx99u5aNfTWOmR4JHwH3WEp0qjAb1wm6
3tj5cQRKaC7TCz9Y2K/o8Ixiywgon3Ydc1dl4d9GNp11W0bhn0zaP9cGBub9
VMkq2z4KWfIvBzPeMbC23O4VP/aOgtKVs5f9rjHw7UUL+8STo1Bx+IHYKQUG
Xp+BKgKej4Kd4rHtP50XcfB6vcxNC6OQ0FoZ+/znPNZvaVJbKzAGiS/M4qXC
5vFAgPcTVakxuDK7wpFhN48tmjM9ZdaOgZlwUeOyzjksdGPr2nmXMRhR1qPk
js7iu79MYrPLxiDTY6hrfnwG3/LY9QA9G4ffSw6pJuiO42svXVz2bJ4Ec5GO
/ML6RvzlEGPtGdNJiNXpa/uX0ICHZCMZgTaTYF/c+zT6aj0+/ORX5I/jk/CF
+ZfTsqUGG4bqVWo/I68372oKKCzBbD+KgdjCJJSy+73HVUJxwcY2EQ+nKWjR
jB65J9MA7Y8+Tnq5T5HnFF31l6aNsDjh/fvmqSlw6p0MMiHPSRs/0xJeXZmC
0bVVeqvLfkPcGgtoDJ2CqMO1/FkX2+C2Spq32Y8pONP8SmLJ/l4wlwnuVVo1
DdtE1a3vbCLrtr7FiqY2DR/tlKxQ9igI7FqTQayZhnR7l9QTMAYlfpXBnZun
4Vhx386+XeOwY1ByXbTNNNBocU12ByfBLCfq6jK/aWhzUHeu+jgN8U3D3UJ3
pkHz62uiZmAa+CYNd8/fm4bjr5LdPdVmoFC1Q6E5choOnL6i8yBmBtBD5aKI
5GmIRLEtcw/pYOKaJC7RPg1qfNmFTw7NQYwvy5vTMw3s/86ZjTyaA26kddfY
4DRwNwrFVZL+/vFrIq2SPk2eR0ZstXTnwVhX9+B9sRmoznMO2iK0AIZCeXEC
RjOwf8mzkReRi/BSiSo2i8i8T17qLi9ZBKahy5V/FjNwUVeQLklfhOyLPDuL
9s/AT6dDbSf3MsCgdcfYzTMzoKyJlGJ4maCfXK3PejEDtG967+ytWNDyL7X8
bOwMDFIIAyNvFvjKRzi2v5+B5JwS3UsxLMh/4OD/4+sMPFM9uqN6ggU7T3eV
3qyeAZHaFUsVgtkwElt4cKpxBu5u8xM884kNoS1vh13/zoCltc5rnlo21O08
RTUbnIGa8TIDARkOHFo9bS/AS4fnZwyP2jzlANO5ceCKMB3ubi//WP6VA9FP
M671U+nQeXqBG1jPgW4B3+gyOTqU7zLqKKZw4bax0/otynQw2GGyYLaaC2pX
TAo+aNChe1O5Ka8pF07/4+u7p0eHIwNrCg2ukP6W7/dmGNIhP+ZqypdQLqTs
/yl8xpQOym5o2/EELswUhqy12kOH2pKi/oB6LvjGylymnqLDoxvzfL4qpO9a
5gX8L9Bh2dnLvj/1CMiXbH02cYUOqrU+rjakn/luvs6pDaBDCrs2j+ckAQmZ
N63RPTqkxgm6r/Mh/TXh1vkljA4RyUGN4XcJCHFezRfxig5Htxz7wowhPflU
JJIvng6Jjxov8XwiPVw1on75Ix3+6v9INcok4JJA9fd/KXQYe2qtmFxAetU4
dZd9Bh0OiGJ/2woCMi8/bivJpcNMiEf42kYCDn26fH5zER0emsbJG5LeY/Ye
IN6V06G3e2LsBunBaDmDx7K1dFjF6Wimk1402S+nGtxMhz/rl32OIT3ZfZ/9
baGNDp4KTnv8SC/fLuy0ONVLzofbvZePSC+rMQpaWoboUH8w4moz6eWyjW/P
7Jqkw7ackLo9pJdPnQpkZ8/RYcP6+Kcs0ruU2JNhWmw6cN8r5rWRHk7+s0vp
Fd8sVCadMZkk4z2S2uliorOwz0dIQZ+MpywkdtyQnAUOEXH4C9lehP9U89jS
WTjxt4rHhUV6OLPhpLPCLBBzoUqwSMDv8W+MapVZWG1WXmU3S8A19echJmtm
4c66R6uiSf/LOV9fmbphFgoEqXrLRwj4EXkkVVF/Fp7rB28s/0fO1++cKWXj
WXgRmuem3UHAg+Vym9TMZkHb8phmVzPpVcfrl1dbzsLgStXP3dWkh6Nbvmnu
mYVd3/0VdEoJMO7cMq9lPwtDOQ3v63IJUFV6vmWd4yyoYvtbOI0cz9sDOTon
ZuHM2IRA6Cuyv/3fWLrnyPHZJKw984jsj4bMNv1LszDviaOibpP5PzVgQ/9Z
6FD0OTl4gsw/rsO77e4sPPhlekzkEJl/w2MzeDALr5fWtfpakvm+7i3d/mwW
ntHcnx7QIOs9lyJkEU3WV54ekb+UzK8vYWkZPwuX/J1v+PITkJdTVWGdMgtf
t+/7PNbOBYeiXXUHymbBNfG/J2XBXDAWSJQ6VDULIY8Meho8uaBqIWLn2DAL
YyJL0jYf5sLUr7Jml85ZuL89Z4hHkwv367e3nZyfhZ1T63h+/OCA55K3CmfY
5Hyp73kYGscBhwN8Luf45uDw2rervt/lgEprQbenxBzQJz41Ku4ifd29beD6
6jnYo9k1b1vBhniV1xo3tOeAN0OaLZbIhvse7FP+pDv5whXPryb3G4ehnNHb
JnOw49ua+zdN2TA5uWU6xGEO0oJ2r25JYcFvneebwpzm4EuNxmTSPRbkXZ6/
HO5O5mM/ON3nxoJ7C9/mI0nX+rysag6TZoEKocN+HTQHF4+aM1rPMeGAhLbw
l8w5+Ga06LVMiAH+5xW8dH/MweyOyq7ChkV4XyXellk8B/ytLwZ/xSzC4oPx
lB91c7A6yWjFoh65PwunOlSOzIE/O34z/fACdPNsej+wah6+vxjtjg+eg3P0
LeYrg+chr/3nk9gb0/B0v2Zq7MN56LpU+6JtyzTkpy1foRY5D1ithvluZgok
PRljWnHzoLvj/b/JE1OQPpYTaZA7D683aFOXPp2Axf5tfXaT83BH4VTjCHcY
7rRsv/PgIOn4YGuJLsdumJr5fnHSeQF8Gff9X/l3gRNV28neYwFonhXW6Rad
oGcms3mV1wIcHLo6ntTUBgOf+gbSHizAgZJOn9ih32B5M3B3648FSBqMP/Z7
4hdIrP4ppam2CEK9H9Yx3PKwLzLihmotgm5ZRUpcegEedEwdmd64CCYeX/07
dItxwaPnxbnbFiHkwqqVf/XKsRfjpPfeg4tQ47Rt8dmyetxUJdLq82ARTp8t
YxSy/uIXl3fHlk4tgn10gG6M3CDeHWVknDe/COU118dU3g9iZp52Szp7ETRq
J2fVdYawk5AkLVaEAYqeLdRX5sN41YvGm75KDLi/beDbxMlRHJ/vdHTDPgaM
/637+uXRJN7/z4al7sAAPYnTbR0iU5hfBJ4rODEgeaPMhZBdU9jDVrlW9BQD
gE0zaf01hTX6+k36bjKAxy9gy4qyaZwsenHVi1QGKOlsy+CSHnda75rzKIMB
NbKUs/8G6JhqZ+sQlMuAjUW/2I7Ks/hCtG7Y5Z8M8BphfOVEzmKdDYscmy4G
/N5Cn5vwIX1uH9DBJ8mEL5w6qrfaAj5x/dJ1hgwTbkrKPpk/uICXxRxbOiXH
hBtnQmQWHyzga4PmNh2rmcBfNZXqM7mAjXwpP76bMOHZVX3XHemLuODNk+hz
F5igm3KgzGgVE3/tWerWd4UJOsx9qMOaid+rRqk7/ceEFbsrJJt9mTj0Q3SK
1T0mfK1wkCpuYuJDqe8KtOKZwJ47iq7fYmGraY3A+I9MWMcjO/I5kYVNdJN2
yaUy4XESRXFjAwurfU9pEM1jQgN9cMUKZTaezP/eN9TMhGDnj+1umWzcy2OY
6NrOhCpBg92DrWzcZJZ3vqWXCeutPKPS2WycU1Yw/3OSCUtSsw4vQxwcVPNL
5IMoC5bfqhfny+fg6zTr6lU0FsScUmDHtHHwuf01j5/JssC8x9/mv0UO3v+7
QS5IlQUspZRNk6QXVnW2aR/fxoKNz+50fHnKxVJKLtPt21lwe5tvxObPXCzg
3p1hv5sFrQeuuM0Wk37v7zPZcZAF6Wl3hVdNcnGHxkn+PGcW7HXSLA/mJ3Dd
6eGfuh4suLR72nvNMgJnjo/vU/Viwc3Gs2+ljQmcuMFz6aurLPieSOgdtiH9
6zXTKu3PAh3DO3+anQl8e27enS+EBdff83+6eIPA3luua/g+ZkFs+HPZ0AcE
PnWdNTr9nAVgtUek4zmByXfolZ4E8jrn41r5LwQ2hdtbD38i+39uqEA4l8B6
AQLcujQW8IcEvtUoJbBGcVCRZRYLun9tiPCtIf0lKBpckM+C+rKCfTx/CEzd
GWJlUMqCsLptH7M6Ccxzn0r7UsmCgF2tJ972k76seNSk0cAC8WH60YJRAg+I
S79408KCk20rz0lOE7h1T6Tzsi4WiBYsOx0+R+CqcFmVR/0siApq3LqdQWDc
EDUgNMaCI1reZRpsAqfLyH/yn2GBkrUdexuXwO8cXl+cX2RBQtJCdSDp76go
Rb0LBAvOXFfUJcj4wd+4xX5BNgg9y9VMImM/BbUfzuJs+P1q6ksQef+3U6o6
J6XZEGdreTqPbH/sm8o7z+VsWNn87ogJk8CqvCorfFeR35cXeya+QGBHG+WH
d9TYYKdxTkuDTuDHL5R4H2qxYVNsyvqwCQKX9yt6P9vIhmVHEvNMSa8TOorD
b/TZcOmn6owp6XV9/1XOicZsWG3ZPBVGev18xcr6dDM2iPh4dGo2EzhBdqV5
niUbzKxP9ElWE7jdXSG7dA8bEk2cN+4oIfCSVPl1tfZsoG/NopfmEHg3Sy6u
xZENXQ/rjz0l5/P2Trmlva5scCscz05/R+CpruWc2XNsmD5QRWt5SM6n9nIv
7iU2nJB787z7FoFdri3rF75OnqOfRNAMLhO4miZbLRfIhuVrfkk2HyCwgPNS
U7UQNkC2npG8BYGNE2Uy1j1mwzcLibdpmwmcZLrkNXrNhtjXbdF10gTueSgt
tfst2f5I88xhHtL7f6UC7cj3rNe4BXXzOBcHX6KdP5HBhqVaP0x7S7jY4y11
W2g1We/LF53Vz3Hxq0nxtKeNbHjRnu25y56LG4zE1d+0ssHa/7ZksREXmzZR
qOn9bAjb+UYuW4R8HgVFOv5w2FDjkO5R8JKDD9gK2/bwc+Duyb3fY/04OPS1
UOmIKAcqo5qt2o5yMGuz4GfOUg5Qfe+0ualwcMsJPj/V9Rzg7aov/fmGjSW/
8k5r63GAveSRyUM/NrYgeI7rG3LA/uzxqHRHNs54TljvsuDA8z8n+ZSWsHFE
OVvhogsHVgRxF17dIPczrYW8nDAO+LifGWzexMQlT4IPm5MOqWQ6iVrzM7EJ
Z9l87SsO6B3iuSvbyMCb6gw29H/kwCcnw1ufPRl4uY9vnGQxB/4KV1wSTljE
fYWcQI8FDmy0y1odNTaP/Q4L7JVw5cKjwOOPTkrS8XxR5GjUCS40ufE7KlfP
YE9t9Xuq57lQPvtrydEHM9iDMC808OXC9bVLDc/zz+Dd74J1j0VywVT6+Q7B
qSksO01ZnlXOhW/2xPazp8dx6j2pHjcdAo526j52mvmHz31W56nZQoBQo+/7
/EP/sFbDVkVDEwJSovuS3+X34gR5d2dpKzIOLeyWut+Do1LSW4s8CLjzUe31
a51OfLvJrkE1ioBHPpWTd/c0YQelZ8X95Ll9q5HwYaeMs/iByoHpj3w86EWv
qoxXZjgM6XXxdAnyoFvff6U/9oqH94fpilbiPKivde287Z6voPRW3kV1BQ9q
xjHKttnFIKN/7m/jJh40oFFoKtnTCNwj1Ea9EzxI79Avvs8//sFN+oEc3dM8
yHvWgZ1u3Qc8ITFxm87xIM+dGs8s2/qAN2eD58ZLPEhSsfqg7EI/CCzfT9X2
50G3LV2PDmgOAaXp2U7VZzzouJsO6+ulMZC1VsqTKiOvb4Lp7eYz8Pzfqbe0
XzwoZuSpRM/tGVj+X9oDySoeNHc5In1ZwQysSDI7TG3gQRFGO82tt9JBQeT4
vEgnDxK0vCiTsnoWVEoSN/LM8yDH6ss0g7E5eHtkZhmxyIMODR5ub1SZBzW6
IcFh8aCQdPbKuUPzoK5SVc3i5UUxpQ8ciovnQfPWxJkFKi/yPu1/68KTBVhn
rPtuQp0XrXS1ogvLMWCPe4nS+jW8KCkjU+agNQM87x2IPq/Ni67GX33G68+A
b01Xn4xt4kXJ/WfTj5HnBuPzeQEjwIvaDRS5W18yweWJDWfNdl4k9ETlu+lP
JtzK7rx22oIXycTg9a/oTCgR5PUcsuZF+qqtbSbke886xtxl4DAvGuDZ/l1r
kgUXSn63qjvzotFFRm2cLBvCR04eOO7Ki+IH+pTct7GhSf+Bdd8JXnTsv4M3
c+6x4UhtjWHvZV4UeuljYaosB27MHc1UvsqL9iy+kHAw4ECM/LSOmy8v+nkh
VN/kMAd6Ty5Z032LFylyiovrojhwhufQss6HvOiddsrLIQkuhK4ejlj5mBdF
HVA9HqxF+tzaV8I5khexz0f0upmTPo+KFmx/yYtKRE6gn9e4IIPXBcjH8KLH
6GDDvsdc0O/PZzvG8SIeOw/fJYnkc6TTQ2/9wIsQ3/kPpr+58PLgpYsrPvGi
szknhZJHuZDnxz96KIUXSXLubLDhIYCnQr33zzdepD1mWaVD+kllKtN5WRYv
mvj41+zKVgJ2yFq2OuSS9bh54v7obgLuuZ+pay7kRc+cGCU+ZwkgjWG1tJQX
VdgZDtz3JaAqJfSnfTkvon+c2FB3j4CJppXbIyt5kWnmJvNdzwigsVLyG2t4
UcJax5rZeAI2KSPDJQ28yGnXzLWGFALsd9Zn7G/mRZcXixd6sgnwOe+uE9FC
3l/YzKdaQkDUE3pyfRsvyn1z/uBT0qM52Xc1pbp40dcM6SyD3wS0dy1N2NfL
i/78DRsT7ySAK/hBMbyfF92kTBVK9ROgpG3wqnaIF61PvU/ZOUqA2f5fspJj
vKi6cu518hQBHtccI/ZM8qJ7fLKHzeYICIoZpYbN8CLn6zKrRBgEfCi5cb96
jhcZRXs0cUiPj12sam9e5EV/HyqeECT3jY3yChs7Wbyo9vTQjYOk56+Unb0z
wCXX7wFTqVkyzvLK/T3By4f+rEhX/P/vAWwFMa0FAT6kv7n8ozgZo3JHP0KY
Dy35K5t2j/T/3ctJdcJifEilSd90L5mvfBVTlSbBh/IOlh13Jf0vXrHr6nIp
PnQg59SGPNL/+7xfVCjJ8CExmbJ0d3I8kUrDK9cs40P3Kx6I2JPjbak08NKR
40MCgidtwsl6KFy9V7J1JR+6IyoRv6yLAFeVlmVmSnzo2J3Na0f+EJBQrXF2
tyofkvoaKSVSR8DQtav5+1fzIYXgfwFePwnQVvspdWQNHwqKaU1enU96vVb2
+DFtPuSht+6nxjcCFtUzxa5s4kMvcr9/kYghwLhe8OiNzXzI2mgXZ/YxAbdu
HEi/a8CHVj4a0dUMJECkcfbQUxM+dG6mKNDnNEG+V3ckvzblQ2ylJSYRjgSE
r4kk3u3gQ+EDcXJscj0uv6X7PnM3H1K6JvM+dw0Bmusu0f848KGF4L2Js51c
ONdSaNF9mA9Jnp2ghFZw4csdqZdDTnyosLmi8EoGFwz+fkEMdz40yPkoZXyf
C5bBkw/lLvIh8zcBZl9I34dugh6VS3zIpfe4UTf5vNZ1hOmt9eZDD46sSj8+
y4FDeuvbjP7jQ9/2xHpfJv1/uuecpnMwH/LkSKZ+2skh3zt5/x1/wIdqbTb+
jtLkwMwW8drzD/mQ8YYLT7tFOOAb9snb/wkf+vL+Xertn2x4YDRS9OYNH9ql
oDugTu4/SU9POvd+50P7WgO+RVFYEL6K4dWWw4d8tqw8e4R0hM+HB0FNP/iQ
3dapsJBsJphlf04tK+ZDn+4cfbXlBBNa2+m8n2r5EDKhdP/JYoCI2q33lwf5
UN2yzeViOxbhRHrUpMAyfrT+SYn3BcYsWBtpCXBX8KMvt3Zs/VkwC5tKcpcv
KPCjW+td/qQEzwK3udN0WIUftYf33d4gMwtPGWqR1ev5kYDS2JYVmnQoQWkG
zyz4UbaiXmSS8TQo1/4K0PDhRxcUPXzW7xiBjwNvtdyu86PQTvE5gS/DsJHr
1/jyBj+K4yTF6ssPg8m6TeoSd/iR83HpCzmTg+AY8rJ89hE/6ki5vOvz436I
2HlWsiiRH9V9cNJ9ntcNfAXir506+FFJlbSQvUYl/PuyN+vxDgF0Zgdh8CLn
Lw61GTKI3CmAGospmpt727D+yK3sZ7sFkO7x9p2bRTvwPdX0nFf7BFCu75cj
lge6sPYzmR/vnASQg0jKljszPdjnv9bC7CsCaPDy9IGkCwNYxOJYZU+CAKLH
mPEP803itF6WVd8HAaRQIqE6HDSJHW9GVg0kCSDFhOEQBcEpnJxVWj36RQDV
r34a5BI8hW3XatbN5Qmg9pz6ydvB0/glbbxJtFkAbdOa2bXMm47Xtfl06ggK
IsIhu2cTex5fEzpEvyIiiJLr+W9M6y3gIp2tIlligohutb142fkF7HCPpWMi
LYiiVJ1ePm1bwLc23wrcrSiI/B72LN2QtogrXN1ePlQRRC+sP3zg71/EMqFm
qXXqgmiFqXOD3nIGTuwVaHXQFkRnjUozP9xg4IZH97WPbRVEfLckhZO3MbFC
7hnT98aC6PtgSZjpOSY+OWDlMAzk9xU8Pqx5ycRsY4lbFy0E0aPDj/+O0ZlY
fSSi8T87QbRV3eWi4hsWvrYj2jfyvCDyMoiIMW9k46KLfo/+eAoika4Xc7fm
2Vj8lUuC3BVBJG/oo8NdzsFx00o1sb6C6LesRGPOEQ6uiHmn/DlYEA3W/t6o
3sLBMhVB+lMPBBFWfEccnOPgo3MnrXTDBFG992OtMikunrXS8s6OFEQ8991T
bS25eCUjpbw0ThCpTMRYSSdz8Sm18A6Rd4IofO1gijjp3/S9XjNWHwXRHpvl
mttaudjiva5CQ4ogkqyskzMh/RteL6OzNF0QhaxNuEUl/dvGnjM/lCGIuA+I
JpoWgT3tsi525gqi9zFOR9JI/+b4v7irjAXR5s2Bb21cSJ8k+b7wKBJEtmH3
hRQukL5tPpLyoVQQhUknKSj4EfgFz7bikXJBlGbhdccmhMB9a1e1rKsSRDO2
mR2pUQRef5AY86wVRJ5ubxrNSC8VfS6UXWgmx1MQZsMgPZyS2Tem1SqIRl87
506QHn6JhYtd2gVRYqOjhnwtgYPKtV5EdAki3SC/g/6khy/V21ws6xVEfaMZ
ssu7SF/99TRn9gsis+gJvSHSw7v/PZFfPyyIUAE1eIL0sP5Y5rTbmCDqVJkf
0CI9rDrX+vPppCCyUrmn+5r0MI3Lfv1rRhBdDIjfZ056mC2kdIUzJ4j6V6hq
qJJeHZLcvluHIYjsLgwm6JOebVp+Quk4m+z/yuq8m6R3C5Tvz0cR5PrVTT/B
JeNkreSqKj4htNPN+036/72sWxvPIySEusXmT0WT9981nrmmJyqEHLbLVOSS
7XuaL917SlwIuT37UkMjPey0x0A9WlIIHfr5KfjVPIEtDx5h1UoLkfUboDjN
EFjP1b+eX1YIWa1Hl/ePE1jpdNyHLSuEkHDo827/QQKLXyrxO6sghB68Lb/a
003gRd9BuzeKQujYzWR331YC99+haDWqCCE+/uV1u+oJ3BC6jkd4tRDyK/pL
31tO4Pyn+34brhFCpTk/hB7mk/6MuZx8QVsIuY8EWPB+I/CzD89ux28QQrUV
nXPJH0kPf8k+9HuTEHJJuuUUHk3gC9nt6yn6QujfgNDPT48IbFGp0uZlLIRO
4+mZENK/m5rM096BEDL/YXbC1oPAqzpOBbeaCSEdH2vTffYEnp9I0TXdJYR+
mV8sZ+kQuHehXtTbWgjN83y3SVQkcA3PXNfHvUJoo7vk+GNxAn+QNgqlOQih
3XLDbrJ9XBwp7+K+47AQuvVf4JavNVx8Sy3A4JqTENqx3V3jYRYXH9L/2dfl
LoQuzauFMO9zsYij3bbUi0Ko6sfkv0pV8vlz91ny7xJZP8n2ETfSv91nXwzL
+gihj0c+zGwd4+Bsv66n/jeEkC6vSEN6GgefiTs7YXNfCD0+q+7VrsvBDklh
JQGhQojCMiKeSXOw2de0lxmPhBA7RyPuxRQby5UuWKx8JoRun1AN8E1i48qh
O2/G4sn6CjrsL17Kxn99jtsMvxNC9CfUKd9pFh4S2Mnq/0jmr5UrjqpiYQFl
ysGuFCEkaH7DgBLAwiaHwyUacoTQEN3Pva2Xib/8ivb73iCEpp4f38d4wMD5
B/3Xfmsm75ffecPXmYGr+o+2fmkRQoE76FTPDQw8zKu6OalTCA2mGR7Jq1/E
KoaJY9EjQshMX15yXnIRRyZlHLnNJ4xuf97Q+/fyPI43eC56U1AYDexKDFM0
mcdfyq59/09EGK04dahuWHgeV/caLfGWEEYtn13wkpdzWEi+qOKknDDSrKoJ
78yaxddCarbabBJGx+ZNHN17ZrDzucFly92FUWLsu8tHa8ax+H0pxwPHhVH+
wrLxoW3jOO+dUXTEKWH06swD5YzkMSzX9UiJelEYcaIvX1S7N4pbbA3W8N0Q
RqJ8RGiZ/jC233LfcOypMJrfEXTghE8ftuZb61zwSxg9bG0cvavXjA2jLsSf
0hFBXY4vHOXtG0Hc8GDeBT0RtKrp6l2PW03Q0Qa/r2wRQSVXbosbJjfDLUUp
SsA2EZR//WD1Rb4WKHv/1evFLhFU9/txlc3HdrDLWEQVbiLIYO+RzRIjvXCu
4XbX2ggRVLq/Ji4Cj4LJlbMMnaci6M2oLZ+R5RhIytovMYgi4x9fO7fXjUH6
YfWdO2JEkO7yGKmznePA6P6Z4pQkgg7FSDrmzUxC0KS4/8MiEeScbeJ9kT0N
b8SfK0zOiCC3VYVmjV/nQDq0cKF/TgSh58+HDo7MQZDYWEP7ogjy7d5Selxp
Hs5RTO9XcEXQrR8XHy8PmQdDkdG5dxRR8nzzn1iu4wL85odaJxVRdOYipZ2n
dxF23zmdZKcuiubrVtg+pTHgB19k4G5NUZSeOz8SZ8KABN5hI4P1oqh4V3Si
4gsGeBERH5cYiqLDF0J+ROxkgjhrIKDCVhTdldh/NPQ+C275SjkX2osi0TaF
aL1UFtAZRgZZB0WR15aqCosmFvxdDJ945yyKKs33drxTYMOHecMjAadF0bbr
A++3vmeDnM9x/WvnRNFx9a/aCuT5MmzukdTFi6LoXRD67j7IhiuzfT+dvEXR
ub61KitWc8BsJkzPIEAU7Xz/jbs8mgOZXtmSG+6Kon3uk2aiWRxYM/1vRD1Y
FEm7iF861MgB2pRB3JKHooieYbZDSoQLHeO91MkoURTbtMe14zQX9p2nDve/
EkVuSTdCMm5xoWRsS0l7jCg65dnuNvSMC0mjob4VCaIoa+DsJqdCLlwb1h98
90UUedy+ucxTgoDQhUSHjq/k+FJ+B9xXJiBOcGWZzHdRtFyzxKRdl4AKZf53
d36IomeKUT1rHQjo3OAjk1sgiqwTAsc0ThBA3zZ8Z6aYrOeiQuQRb9I7jrXu
bhWiaFewgeEp0h8bT5k1RFWLIk3+nEBE+sTcJ8O0rk4U+e7sE96bRIDjXc00
4SZR8vxUevlJBgEXIl4pwR9RNFB4JYBaQMCdWIlwn7+iqKNl6UTeL9KnKQHE
5w5RFD/Z8l9cAwHJebMX+rvJ/PKc6Zy/BBRWnOxU6BNFlk/qFUR7Cfjd8tfG
flAUzS5mVocMETAyYPMjZEQUHbqj1GY2QQAxW6BdPC6K7ISfKq2nEyDDrxfN
nBJFAd2p/jYL//8/9QexTbNk/7KV22KZBGxTlPvv9IIoctdLU9Ik/bh/3cOR
WKYoWuFlBP9In54w4nFs4Yiii97f1jaQ3vTddfmXJC8FSV3W6P6/Tx8dHDDY
KUBBceOZR6zIOOH44Y/+whRkVhAd30y2l3W5alkmhYKi+bTyn5AerQqA4HEq
BZ2rLssLJD3a8yh9Xk2KgoI6p9M+kR6df61+wkmGgvwUUKYg6VFKclTzk2UU
lME4MvhkhIBVOWLmlXIUJP5d4JRDHwG65f7f+FZRkFoQ1fX//3e3/D2taqhM
QZtDnNjXmglw6vN44qVGQf75wxdaq0hvzvzhS9SgoFOff0xcKCYgkMfqUrcW
BenLT33fmk1AioKO7V4dClrtJb3RM56AIq2EgiA9Ckqou+jZ/pSAPwbLNuZv
oaAsDt/Km/cI4DnAkVhnQkHdx5kyp88SsPSYp7+HKQVRKcSKtCMEaHn9G3+1
g4L2fvbmbrQiwO7hryqKFQW1a49J/tUg4NQrY2OzPRTSh96rBJYScCMx9dN1
Wwqih/nVnuQl4H3p0wdDBymIt+25dOcfLuQ0ijAVj5D1MS76PE2u/9qe/04f
dKEgi6inHPSJC4scN8syDwoKkbLnf/ofF8TFm79zTlLQkm83hl+6c0FZzlJj
81kKcikt7Ou05MJu/fVCCV4UNCx+/IvqEi5EX2AWB/iT+Wr3FH6N4UAjr7bY
7QAKKjqprvU7gAOUp877b9+lIM252AR7Dw5czS3ovv2AvH6vxO2UBgf2iwRz
7jyjoJmLUr8479hw71XWjrsvyPkxdr205C4b8PqRkLvRFDQqr5z6wI0N2gds
5ALjKSjWtLk/Vo4NwvFLtgSlkPnncuVuB7LAZLO5f1AaBRkPrZLLcWHBlXKf
0qBv5HpzSKM4bmFB70SrXXAOBWnopq1rHmBCnlGs570yCvL+NrC53oQJl5q1
kx50UtCK2/bvvjQuQuIpl+kHPRSUeNLeuvntInSzHhmE9FHQ2Jp9kl6XF8FG
hV4WMkJBu8TDFaWlFkHzYva/0Hly/RZZ319usQCdIhYrH0mIobCq3LaNUXOw
y/ho+BMTMdKjtXiybxqUXFrPNpmKoYfBR3eMxU7D4k27nUvNxZCdZ+oXb6dp
+Fi8k/vMSgwxy06AfsMUiFhtPPfykBjynG2LAq9J+HmY1zLukhjKWnrF275/
BMyvviVS3ouhhIRc1Ue2PWCaPnihQkIcxewc/pC89Ts2Oqyk0iQljv5d2NWB
Obl4M8/h5g4ZcbTyLKP9hWsBXrOnwmhaThxxuqJ8h1RKsdRIsshyDXGEPXo+
esfV4B7lS/HHQRwZx02sMv3RggMes5t5PMXRw8fCgkWP+vF/BpvvUy6Lo5ZL
PHa7FQewd9d5YxkfccRKdkqzTxnAp9d1xWvcEEfXb9KHeisGse2vwot77omj
7fLbx0I5w1iZN1g0OlYcddSqj7pYTOBCT6ltW+rF0Yc2yiZfTTp2mgtJ02kS
R5GS688YetDx4nWh1dp/xFHIRefg8Dd0vPEOS0K5Qxy9X/B1ZcjM4tin/d2U
YXHU8Goi+iVzFvvnZN/t5KGiS0qDr8W+zGM50GO08FPRHtbhtc/75nFmccr5
RiEqOrJjo/e75Qt4vOqtQ7k4Fbk1u1eb31zATl0PNdOXU1HE7NySqxaL2EjA
vSpwIxVFirVbpuUy8O977eiWLhXdWizQGh5k4EvUgxm++lTUKfrE+skSJk6S
tY65aExFu1Y5PTc8zcRya/Q9D1tS0bXu6aFcKgtnfv7SZ2dFRR9OvbI/t5mF
929ae3jPHioazLHpCnZi4ftGSmbb7anoRzOVw/7Iwos2FJl1rlR0asl0Xrkh
G0c23L2ncYyKXv5NPp/rzMYbDxJs5RNUJGy6akj6FhufdJ3tlz1HRelPmmzG
i9j496XO7zzXqOjNmTllY1MOvrRwSJvlS0XnzybsMT3KwRI3GmPn/P4/3sni
dzc42CKw/P7IHfJ+oVsiDzI4OON5+pGmR1R0TPyAcaoiF88keXtIPqGiR44z
bemGXLw+3+D87mdUJJf2rZNuz8Uf+/L9C6KpaMDA78LaYC7uXwgIZr2hIply
gyylN1ysImYerv+WimaMQzv3ZXJxtE5lXHIiFe3Nb/A82svFrTvCkgaTyflJ
UC00XuBi2UO2X1W+UJGkeW3mfjHS0/5/SqIyqaiLSzxeTfqk+vHL6sZsKjp+
n3PnnxmBKe+cf0v8oKKT9dZ6f+xI71X+G7xbTEVWDqeV3Ej/FHa+n8JlVPTi
2drH8wEE5k6fZjB/UZF15nqtQtJLRoLr+PSrqUhCKTGigPTUteVTFK86Klpw
HPeZJb2VsfbrkuRGKrJVP3fPifTYjImPwuBvKjpxIdNvkfTahv1b1VX+UpHG
hpvS5aTnzh1nr3PuoCKu8mvhStJ7idewflQ3FR08LK7K+5fAAyG3ofEfFWll
TG4400P6+I25pcQgFR3aEsEVHCKwa7qI7a4RKsrRP+XRRHrzdWnl4bvjZD29
aMbNpEf/toS54ykqwiz74yILBF42ZnuWSSf7K61dep70rD0hc2XzAhXxlGeZ
C3II/Fi65YYnk4paHlr9riE9XKP+KvATh4reJ7ifrSC9LLbVJWyARwI1H0vi
LpCxpbXyc2UBCVTuzgk7SMaBR/veOAlLIONbHkrDZHtFlz58fE6RQLblsnnJ
LAITgWfSGqgSaMvW657xiwQ2frEuhyolgfxOrLKtmCXw9eSpIksZCSTLKvVR
myJwJv5aeWeZBBKQcyK+jBCY3uDTlC8ngT6/XqR69hF448DWDsZKCcTZ3Fnh
1kHg8wx2v56yBFI8fv1YUDPpY/GCiYtqEmj1kaOUzioCDyreWUjSkEBOX6wX
ThUTWE3XgmdASwJ5cFVPamQT2M1CVFR5vQRyODT2akUKgWMOV0k56Uig+Lja
dogn8PJb+1UbtkigvGKd7DX3CHzgyVJtqpEEyv0Wxx6/TuCI9y16liYSyCKU
Ej14hvR+tYtF/g5yfFt/+tzYTeBd3cp7GTslUD9v3e3lWwkcRO87qGdFjsdB
P3R0NYF55M6eTrKVQJbFup4GPASePXE19JmLBJqtdgz6L5GL7YjFcy/dJFBl
wt8CnydcnP7c1ybGQwLxbvS5W3aDiz3L/STen5FAM3PJH47bcPH4mrvhGT4S
qOjEkG7aAAdbFwl6ZV+XQGv2fb10tJKDkx2DbX/ckEB/tyVHn0glvRzyQLr0
tgRKnIc1t705eGAsPLIpTAJRi/g38TDZ2DxQ2rvlsQR69fTFj+BWNk5YGXmg
PVICaW2JuHU+i43d9zyX7Xspgfqe5jxzuMLGXamvo+jvJVBU8fz6b30s3HIp
KVoaS6DW6l/Y9iMTbxHT9pMtkkAmBe4u8v5M/OztZ2e5Ugkk+A/O7bNjYvum
L6tUKiXQgRODUTxsBq7f/D1W548E2nEpDyItGLhisThh3yTZf3+2+9nCBZzn
35EcpiiJ7nQ6Pwk5MEv69INyo4okUrTsv9K9lIyrvJ4tWy2JjnVJS6U10/EP
OaFbsdqSyM/ed1mVHR3nZ663S98qifKzp04t3z2DCyduMprtJJFGudpkqBK5
NbioWKy8J4nuze821OQfxLUmJ7s+TUmiVYO173KlsvCl7ZeX9tAlkYjqreXj
Il+xjOVNK9kFSaT2aaWnFfEJH7J9/v0WRxKt81dbdHd7hKfS/v3UEqShdY2i
xtOGX+BayZJYQoqGhtx+CU7pV8H94cv7EtfSUENMOZV3uhv+jl4f3b6OhlQL
I3MtQ3tAe+JmUOd6Gnqz1ENIWaMXamZC8pZsoiHJ1c5yV478A2n2W01/Axrq
Zhpd2ZrfDy8lmnjszGlo4puV69ypEfikq5fGdqGhJdYnt9ZGT0PYtRVZ/7nS
0Cv9pX9OtU2D5w9uPtONzLc/sOHNihnQ2/mratGDhvh+oKDuyBnIc3QZmj1D
Q7MHopuCg+jkef2e4rgPDf0SylOyOTAHKWXnV5+7RkOv6RWeSg/nIFzMbt3o
dRra/mo880bJHNg/XWk0fIOGwrb9c63UmYeOj+kO/bdpaG+Cj0us0AJM1LY/
7AijoaN8gpfXRi1CnUxRpFM4DV2/6/tRoHyR9PmHV22PaWjtmk9s+4VF8Pnn
ldgaSUPWCh0TDvYMIOaFSptf0pDf36/KJcJM6DUaq7SPpqFLzKSjhrpMKLlV
39D4moZ2+K8dUHRhwj1KdHd9LA3F52spbE5nAm2VDrv6PQ0ZxPaKXLRjwYy7
LL/NRxra362138KXBU0fWKJViWQ91z1oDoxlQZRO2bKKZBoSia5AhqMsUDY/
oluWTkMnxg64uF9ng8ADZGj+jYZ6zzyQPf6KDQM16qYlGTQUfbq78lceG5IO
Te0pyqIhK7GIvZkcNmw6F3gmP5+GfnTKnhS5xoHji2G5zgU0VFhBmfJ6zoGo
u1HinEIaKr/600Y+kwOc6E8pRqU05FEj7Kk1zYGNazKIv2U09G47f0YYlQvu
Gfn7fMtpKKmyoHbDGi6UV9fPZFXS0Cfxsh/qLlxgHm7bfqiahtSWKm29fpUL
6wb6IhdqaGjb/dN/hcK5EMFd0NdvoCF9LWHZmnwuOG9Y9d/XFhriVHeasKUJ
CM/VqNr/l4aMY+UiaatJD+3UWTnTRkNBL6/FORqQnnTdgTd20VAeJ1EizJH0
75gNra6bHP/BY+E+Zwh4eO2g28VeGpJ1oUk8uU7ATPgZ/pR+Glp9YOz6CdJT
6iuv2NsM0tDonZNfFUhvHUr0ezc2RCPfd5dvCqYQ8GBz8HzICA01K2SHK5E+
+1EYvnPtGA1dC1nx5jzptymbl1EV4zTk/SL15BjpO5W/b4dPT9KQYEp9cjTp
vwMnPhuKTpPr1WqJvj/pw3szmSEfZ2hovb9FXTjpx1z/gvadszSUrOFn00T6
coJSsW5wjlwfWpRAS9KfSs8b/YMWaGif5227cdKndqrkSZZBQ10NP14WkX4N
Sh1QKmXSEKP9j2k56dssoykvDzYNPT2/cTOX9O/oT0YRP5eGuPrnTniQPl5l
zy/zlqAhYQXvKiYZ23aLHzfjlULSZ32PFZLx3XOymT18Uqhlfko7i/R35qKi
cICAFJoRf7Khi03A8N01h5SEpJDKbter+qTfFaR0E7GwFLpm/Xpp/jwBe14b
M11EpZDC9kYlnxkCAtZYWHEpUojPqfabyzgB3zL2Rr8Wl0L2kvEzVwcJGDQ9
PG4sIYVKLWN4iroJkKtxN2mXlEKfLxyibGslwNrx3KP/pKQQx+IdGq4j4Ob/
KrT3cKqyPg7gQr2Skb22W5wxknShRDFqxqwfuiiMXCpNyiWO3Ks3JV6h0gmV
Ur2ZEhEmlS40KdSKGpSIQm+TOCqXUm5xOMex96z3z/WstZ71+333evazP8+z
u6PEeiwDi8sy3lTX8Lh4d7xFmSYDqnsOa7Q+4PFH7ujBzdoMJPtL5uqU8Hid
TqZxxiwGfv5co7LkAvXt5fyoH/UZsHbw26Vygsc3zW9WtwoY0PMd7GcTeKzp
WLVDy5ABS59LGX/58XhNc939O7NpHotOJoe58TjGt0XVcw4DKy+oz3IEHndE
915PN6HnKcxvzdLnce6apmDt+QwYGyYMhU3nsVC7zOT8AgZyjTifVAmH+0tS
L+WY0X5Va7vKGjjM9S8+c8uSgUrP4zZDezlc9UDHbdkyBg68fBr1qw+HjxxT
UL9nxUBhnNZTfjWHv1v4UkRsGBhYOvHWV5PDgsCo2IZfGBiyEhaZ/TGJxUu3
2bgDA9s+18esSJnEeYprRlvsGGjesFEzJ2wSm17SjXy3kgGpYrZLrPkkXvG2
3P/LOgZSdzqy+4rk2MtNcZ3qJgY6XcIvWKROYIFh37QTXgzouK3PNwqYwOL+
V4+Z3xjoeS3Ni/55Agcdy7edtZWB+ckaMzb1yfDeGkeL+dsZuA5GrRI7GT5j
m6a7OpKByDE2IoP610stuuXpTga8hyS+a6l/BW990112MxCcsbwjYvc4vhxt
qbYhioG0PUqv9GfS93FJC789lgFiUXhWYD+GGxcIehJFDNQOaiwsTxvFgT35
ytxRmv/7dzt/8xrFsjxzo5gUBsz7N59PMhzFcwwdtu4+zoBF4fWNh2+O4L3a
Ia/8TzOwXsN81arab1hf6R5xyGbgokfc3L6uISxs88iYWsqAbdxVo+Y/+/DE
idS1yd0MeFR51cs+v8Li08tvz+1l4Em04v6aqy9xdUaPbtUnWq9FcaYgpAmf
zHXolX2h90mYWKvwoh7PvTtxJOwbAwpbrm4xqHiMXd+FPnFVQFD9zD6Y9Ygk
l02dsbYeAtXgzuq7wmZydImsoFgfwfEt87R+LGghEVZX1F2/R6A8c7DKrKuV
2GDldpEhAnX9HzZ5+b0h9e4V/5Ga0PVfVIaa3NrJ2H6zsralCJQ8XrNW0z4S
p1o1q8suCM7Fdlvqbf5KqmaeVzF2RaDokp7EdnwlNpvmteWtR5A5t9RJGNBP
jLvtDhV4IIi8VpqhFj5AOKV9TYWbEcTp932aWj5IbuHO8FuBCPbc0vc2Lx4m
JqIIO4sgBO8Tra+6DAyTiw0TmsU7EEz3UhYqmn0jKVu1K0pCEeScWNSxIO8b
2R7rpFq6C4Fk3zuhc9oI0S79s+BBHK1H2Ob0xFVCjnH2Mb/EIwhe81rnVpKE
KK5udCEJCIrjprsZlEvIQPPnkUeHELjLbYRxxmOkdvgHhyfJCC7NrrQyGRoj
sYtTOp6dRXBxPcky2yUlw1E6JU7nEARe/77xfpaU7HiQd+R5BoLSDToL7tVJ
iaczWdRwAUFsZUqwsrGMLA4ZiW3KQSCe8TzmUb2MiPO36f6vCEHvH+xsubKc
vCw9UJR0k+YRIU73WiQnT55m2S+9jeCoNB0PecrJla/tYSfuIAiIPKX4KkdO
dln5VK4sR3Afq4f8ZDlJAtbEbxyuQGAZbfjU23OSbNyc3Zf9EMFGDR+/Yvp9
vCKuQ2uiEsH476I8CfWw4l8+IbdrEczQlMXXmXFkpDWe3/YMwSMn92N7HTnS
3Zt9Ru053Z/bbuG6nSPP1MQPg14geJxnHXDkvxypMFDw1GpCUDRsevzDDY7c
WGL4qeolglGnYlFoNUdOe/qyBq0IEgPWBkuHOXJEmHCl7jWCZqXnety/qEej
L9nuf4NgVUudpamAJ96Z4qDmNgTG03eEyu148usNhcnEdgQNgyuTsql/4ZFh
urkYwWHreeM7AqiHPvpWpHxAII3yEYQf4om2JMHNpgtB7g1rScEpnqio5HR3
dSMQZerHTM3miWxWZezpXgTlFqZOR6/x5Itpp4bdZ9p/QzQyL+VJu+2Ugv4+
BPXnNeKllTxpdJ39U+ZXBD4PpKt66qgP/ewa1w4g0PW1MRpvpn7+t1/g2CCC
mFMvmk2p564kJcryhunzlVYZH6TeO38uJ819BEFQkG6HjHrwWGGlsYKE9rfk
TetZ6sUD5Z33i8YQpIawXe6jPNlZP8V1i5Te34m/ey2kPPHvmP1RZQJBaNy6
Gks59e+Q3f67cgQJkkOhG6h3Vyv5qwdwCJwiblf/Tj1ro3XwMqPAQrz71Mb/
/0+9cF6uDZnCQtqdssMiOhYsr6oPU2JhwFurdwndr+703l9vKguBd/yU5NS7
ClsVx2umsRB+aKSrl3p3OMLoeJQKCyWihflj1LsfE+yN5qiycK0jyHs+rb81
3b+0cQYLDs46i2Jpf7V5B50PfEfnHQt/GfzAk7K7uZ2mM1nwHU9/KGrjyfXa
qr1vNFhY2+cstqP5Zf39foYIsWByz+2dAc335BfFnGWaLFiGC0YNaP4HOSPr
91osqL42Cbe/y5M9Gg51aTosMFk9J5Ov8iTIaLuv7SwWxpY33h65yJN/AKw0
qQ4=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->
NCache[{{0, 15/Pi}, {-1.9999998212635146`, 1.9999988627451213`}}, {{
0, 4.7746482927568605`}, {-1.9999998212635146`, 1.9999988627451213`}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], ",",
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwUV3c81e8Xt7NdobRkJSQtSch5IlLSkBQhSshXkVSorKyQhKTSQiqVGZXw
SDJCdiGRPTLv5e7x+/z+uq/36z7PGe9zzvM5b5XTPjZnBfj4+B4I8fH9//eR
XOFBDc0gExHe0sSw9cUmj9W/dl7gHofP9KPLHnskw87oK5GGXA8Y/TyRsNMj
E6INDjspc6+CdkBJHLgXga7srn1y3GgIzrrd+Pz0Vwi7sQ1Lcu8DI6q9/aht
O7wp0g0S474EvSD75vOrhoAp0PWGUf4KTu/R7LbLGwJLm7A/Ezdew564b40N
psMwOteOvnNyQKdmV5+V5wgo6wYuieO8A07hhKnFuzGw6nDdH8UtgI7kJSzD
1VNQefDtryXcDyBilLeqwYgMt78nBS51/wjeql5GL0PJ4GARuGrNj4/wRiJM
VfAbGRZ2WZza+uQTPBk+O7z1AAXWb/w76mjyGR6+X30IbBcgQUKeWhBcAcYv
Zb+F7qOCQzTzftloBdBdKNdvRlJhveDAztqDGJjhH9ZPVlLBhfPT5IJMJZh8
95ju3U4D5kJm+M3+Shj+p3BYR5EOusO7xHNDqoCcwK5TKWeAvOqWk0VFVZAb
k/3g7QwDWKfU334cq4ITU6pfb65lQt1v8YNfD32Fn7fs+2RDmODa/utu19pq
cNawunZrOwssZRsG/xytBr9mbf2jrizQPVSxbSi6GlZWr9x7Kp4FzO9ZndOz
1ZD41eL7zr8sSKm6uEKw8htcYrvKdQezIYjvrJfowjf4rBSsmJrFBleTE5+l
NGsg32dPaXw9G3RLTZwUE2tgxm1Pr6osB+oKJJ5vdKmFsA8twl2pHMid5c5v
TamFBY6//t4SDtzbSDY1qKuF6redGeMdHDj9umvYdHMdrE4MGKuQ4QLr2QvN
E3z1sK9T1zPzGheEtoQtTm6uB291MfeZJC5IfnGsuuFaD41DSi2hr7mgNCDn
mFlVD7lzD5oDO7igcXFWU59SD6tnzc70j3NhE3/DYp3adwj/8fFULJsLSCX8
zkzEd5iOXVKZq8IDywInx7Di72B/7Yr5+m08OLJ7p5b86HfofdN/ZciMB6dd
56p27m2A0qLPR9ad4YHXfMOdxqsNUHnTA+Vc5MGlsJeOp141AG345tmLITyI
eO5MjRBrhKhdHdLf0ngQv8Xw63LDRpCX2sA+nMWDe18UEnO8GqEj04i8Jo8H
T47MO+561Ag+sv35Gz7xIHugUauloRFMwZ8dWMWD3IuvqKfZjaBzdOCxaAMP
PvBHfF3UaYIf1JTTv9p4UHn3VGKMUxPsuxm9erSbB3UqRk6rEprAXdY4Q+8v
D1oKlmnnVjTBxgtfflSN8KB7N5mKZpvgJ6UwLHGSB4OtTV/b1/4A5b07nz6e
4cGk6+tE98M/QIAhTpqc5wF5PsKJEfoDXkme/3J5gQesMBft+IIf0OG67QWi
8kBoqTFNafAHXBf8UrCfxgPJjOXVBUub4buD6GAygeW3UhL3mDXDCYu47asJ
vKbqh9OvS83wQ+Fk/tAiDzRscrS9spqh9JziyUkKD3QHI2nsjmb4QiObbib8
r/60ebBWoAVUt70OLJ7mgXLYE0vZVS0Q0x2tEDTBA/V9knkO21pgs9u5LcHD
PNCUDVLIsmoBL6fiqS99PNDpHrs2faYFbjw89Z95Fw82Pz82qH+9BYbtxzpF
W3mgd+6rZWhKC9DN7ewl63mwc8uWvPq3LSDiCOsPV/LAhPFEQe5bC/R9KL/c
UcID0y+S1x3/tEC32aWQB295sP/IuOWsVCtoc7O+jd7jwcEVdnkGGq2Q+Ylx
2+cWD2wGviqEm7RC/KltWobXeXDy4tNBeZ9W2LsuQiX1FA9cdkrtc45uBVVL
T13Nwzxw47+W9/JpK5iq1J7nAA+879pdN2xpBXJqofylNTzwta8evDneCnfF
yw/JS/DgssrWfU18bVDYbODGpHEhuEBqmcuWNmiZ1p9PbebCndbqvMikNsiO
vnN17RUuZETtVj6W0waOC03HfZ258N6oIlG9qg0uvN1yQNaCCz0vPlz8Ot8G
HRnUfHM5Yp6CcrbxH2kHkXu3hG+94MDOTeuzWjzbYf+GReH/YjhwYDhT/llo
Ozxe78qX4cWBiwcfL5rkt0P3u/Bnshs5UKaa+OG6TAfsHbiRJJHDhuZfkpoH
1neAhdy2A6+j2TAYfyttFXQA12Vp33M3NiyhhQeWXuiAY6esv2SvZoNNw2Uj
elMHML54/lwWyYLxSyfxpfhOWEXK/mhnwASWZtcms6xOGLjxkCUmyQTpPttn
S8s6YUe/bppGPwO2WR4MK/jXCQfa2hlPbzIgePVus9n9P4G6+K83/xsd5L9p
1HqJ/YKeu4a9uzfRAC0j/3CN6gKRbw3VQc8o4IiKBrY/6wK6WY6fmzMFArz8
F8RKuyDFOjTv+yoK5FdQVxROd0FIpwhb7h4ZVDxYbgLHusHS5NarxrB5EPgo
xMpQ64EAioX7TOwMfLNfvn648je499Q8zhQZgf2PjUPcWX3QgjoHTc4kw9W5
+UNhcv3Aly9Q013Cqsgye6mcvqEfrmtcv9Xjm4y5E7JVrSf7QSCU75Ccyjtc
pD8mtKusHw7tvdVexqjE0uOW326Z/AV5Hb0xG9U2HBBG2e/C+wsBqe1qaZGD
WHrDwaLzEgNQdrvi3acVQ/hFx6tV15YPgL+K0VOPd0O4bb3z1L1NA/B2xVvh
k+3DeOOPutsNpwYgol0jHa0Yw4Mrn7ToVw6AyDbpdctj/+ED7y3tpMIGQclb
n5q2MI890r7JrEkYhH10pmrCTjIOv25ar/NoECpOBFEFgsn40x5j4wPFg3B6
3UE1N2EK1ujcpBo3MQicVU0nW6UWMD912YyozRBoaglw6gWpeHVP8kvFU0NQ
pjjpOwhUbFBBctX0HgLzgVMJzteo+EKUeMfeqCGIX3b32LU5Ku5dxv0UVToE
Sm/20Fe203DJjpFIIbVhMJRJufksgIFbV50G+c3D4Hk2pdAoh4GneH10tV3D
kBIf3q36m4HV6rr+Mzs+DNfDwuqbDZk48UTjkfC4YYjiSz8TOs/Eb4z3SSSl
DcOw51bX42tYuEa5pvr5i2Go06Id9LVkYc443vEFD0OVpoj9mXQW9gosWsO3
MAx+vvN/dY3YONJp8y8Z/hGwmDi+uOjCxs92v0tcKz0C8dPqiBrJxr/EXgqC
5gisfp8S/qSJjfc8fDhxw3EE5vc1bL10lINdgpdn3j43AmWZjgcm/Dj42ukU
x8dXRoAe/xju3uXgQu2E5rLEEdhdecjnUiMHr/0cVsyqHoGeoKjj/xlwcZWC
iP+P1hEQ3plIGzvMxW6+sVuf943A68ScDWmeXJyzLjnPgj4CHcVPRhPvcfGB
0OUXVgiPwoG8gxZdOVw82/NIZ0p2FKibv/47jLlYLzHr9d0No5Bw5tli+wgX
/5zU9HQzGIUrmXec/9C4OND8ncYO81HopdktWybGwxXM4sxe51Hw+ybyUU6L
h12OGZ7O+28UQO52268dPCyYX6EcHjAKUqd1Hteb87Dl2drH65NGYeWxxb96
p3h4Els5Mp+MQqi55od3Xjx8e2XLyqY3o2AxEkuzuczDmy/bdj/9OApz3inO
6iE83Nbcdd/v2yi8DTiaqxLDw/7aTnbmbaMwmuCTuz+Rh5dHDsgr9o/CSKi2
ztP7PFzaf7Z98t8oXH7hylR6wsOOhpN3y+mjEDudMF+fycPclAuHE4XHYLCt
fvbpKx5+PkuWPrN0DJKU67qeveXhPfuvNm1fOwYx9/ruNebx8GgWK05UZwyo
LvzL1Ap5OIYXsv+3wRg8D6i2ziri4Q0OQmK55mOwtv7kjsPvefjH+5jaUJsx
WIBHbRoE9pWRijp6agzS8qjqmsT5pV5392h4j8Hp22E7bQt4uLhaQZARMAZe
t2aU3+Ty8Im1D780RI6BOd+deZ03PMwMVAp9kjQGdRY2td3ZPJzekWFy8ekY
8b2o/lrwnIdh03qO2dsxcNsgI138iIcHb735vOzTGKQMLLQNpfBwxPCmoIlv
YyC/rn2PyW0e1oD3BmVtxH3Xp4+qI3i4/oEBLaF/DPSzRuSvXuNh74WyYtep
MXjYW0M5dpGHpQ/t9tdjEPExqaGu7jxc8Prb1iUi4xA1VCr+0IGHbYX2z3cv
HQc189FhnjUPP/hkcyFEZxyyJ28s2m7lYWP5Xzo2O8dB+5P57B41Hu67cPKf
usU4UPI1Ks/I8bC6upvn91PjoHP1bs6meS6uCR7XeOw9Ds/RzaI/fVx8rtt7
xCdwHIQeHfcra+Di3ITLpxWSx6FQPklHOpOLD08wlMefjsP1ckGz8NtcTDEL
7i99Ow6Tth7mWle52IAR5ehSMw5X5u+ELLUk5udMmt0bxjjsO+9PcvvLwdNt
y/yfC09A2SXzPI8aDlY0vXf3vuwEnJX7Glf+hoMvKCc13tSaAN+T7mGn/Tl4
5Z84U0f7CXhc9qQzk8PG5gfEXWzOTsDcCf0yqz429v0cc8Py4gS8ZrdbW1Ww
cc2DyI96tybgZ2uyn+11Nr5kF6Ir9WkCioc+PsyaY+En3zhWgt8mYFxb8P7a
Rhb+rnf9HKOF8Lei+jk9m4WV5QKzRsYnIDTuwsk6BxZubPZbWaE4Ce4zCYG0
UiZW3+cu4hMwCY5iz+iezgx86OOw2tmISSi1rAjU28zAQevP7D6ZOAnxtVOx
5/kZuEXY5freV5Pw9UxeiU4GHd+osiev7ZoEpruJI7eXhn8aWfe17PgHOs8e
ZJENqDhaV69kK+0fJIY8Od2bRMb6XR3qG4Sm4Er4IyvvQ2Q8GnY5WU12ClS8
GnpDJMjYorPEV37DFGTkFJ7YGT6PRa7v3EB1ngJf7zaSttccjqg3efapZgr2
pxzJcLaawqFu+2JR6jQsNKlaXi8cxAEPnZ0Pbp+FhS7LNofxHMg/wdjgtXsW
Bq+s2S6zpxDGl6UwIq1nISCv9sAZuQ9gn1yfUn52FrgFG/6jHa8Ew3i9Bp3U
WfAyvT9YPFMP7BviBhK0Weh9qOCpf/0nVG7+LermOAfeL+yjHaKGoffOq9mL
p+fAvlLSxGA58Q7PXP4Z4jkHhiT+wOSXI7D5HSnrkf8cjJq48d7XjMJzLQto
j5+Dq/Ojzy244xCuWnDZtHwObuhb3606NA3m8tGDykrz0PZ7enC+kAxZul1W
JPV5yPzvtsToDBmE9mkV87TmIbx5ufN/2hSovtEQ3bd9HihX+LeoE/vKnjGZ
jenW89BXfXZOK2oBTEvTri6/MQ+xz0IrzhlRIaNj4q/IzXnQnduS/9OHCgKz
hvupMfPg8PZJTWUmFb6o/VndmTIPl6euVi8RJ/ah2ypVSW/nYXJE6fTuFhqY
uORISvfOw6uN32x8TRnwJIh1mTMwD3HhuxM3XGAAN+VA/9TYPLwJOzth84AB
5fUzBQ2UeUjZE6E0OM0A423bjt+SIENCo23G+B0mpFtHVAbIkkHPv7VosoQJ
bI9OLc/lZDC9JPHwyB8mfE6/yrZQI8Pl7Yk392uywFCk7LkQodvtel5Ntpaw
4KGylMQCIoOU4e7XQ12EnjV09h+yIEMOfvzrKJMFn3z49lbZkEFkC6QeMGKD
QfeeqRAvMhx/PzYVV8yGNMq9Yz6+ZNAQqXO90cYGutRYhfMVMpx74dtYO8OG
D6a37u4KJ0Oi4SOps+s4oP+2SZ/1gAxorKEvP5YDXUN5df89I+4frQuwzeJA
0Kokh95sMog79EvolnOgItYuuLyIDJGRzQ9CpzjgUmVA0i0lw7Xm8y50AS4I
MFdmPKkkQ0TPxw+ZilzYe67/W0gTGXRHm/4l7ebC5LMvx+faycC5LlzZacuF
+K7MCZceMhgUNMjt9+BCy15PKdMxMryqcDv77RYX/EL2Py2cJkPao49RDQ+4
IP9BZ4vaAhmcn2Zc4Cf08gmNeVshfgpYkUyWsaq5wHRqH/VfQgEXid51Fa1c
SL9XHDAiRYG/D6cf5f3hgknTfXE7eQrYJDjqNhN6+q9QUHrNSgq8z8tJW03h
Qrixo+4OFQoku1Me3Sf0tbq/SeXL9RT4qDfNBWEe1LxRtlHUpcBdyX+3FaR4
cG5IYDhGjwIaYX9WKsoTenHVyGWGIQVymo/e2LuS0Ls2tUu8dlMgqep6UuZa
HhyOff2gZy8FLC6s36WjTujRL3EbrA5SYH/t17MD63mQwjhf/tmWAjOyZ5hV
2jzQ33L4kM5JCtza8HGmRYcHXZ5bB9JdKaD6brmxhC4Pgp7JX5LypEDR2NWB
iwRe3UUVCr5AgZ5PvkNCBK6Q6U6d8SfOg9GBauK+y97PmqeuEfmcKNiQT9gX
CHlc2hxGgT8y1vfrCP9ZJSEHUAzBR+v6HCkiPosZ1778BAr8jGBEhBDxj6/b
46tyjwKeAcsPKhH5xTlpCCQ9ogBd59KWSTlC794TTRHIoMAkNc1lSJLQ642T
6y69okBtUO5ScYI/P6GmD0O5FDAWvBjhTPArb5y3z7aYArT8bfS/ZC6UXLr7
u/ozBbwj/hTfJepz4s2l89urKJCye0z8IlG/9JUGd5c1UyAou66xjKi3ic1K
tehO4vy9Y3NaH4h63mK/p/2mQGzpS8XaV0T9GJVdXeMUOJHeopJM9FPN5kyv
fbPEO5Nzc6QqgAuenpHsT4tE/Gq5l9SJ/nv7a5/yI4EFeEo9PR9M9OtBGZ1C
CbEFUKq6NRuwkQtzFtJ7rsssQLyZfWc20d96JW0eTqsXQGdHff4zYh7KU07m
rdVfAOPWwd1KcRzI+lk6p2K8AIoap0yT/DgQq7hyq7rpAlyRO69gb88Bu/Su
95oHF6Alsi1zQJ0Dc5nHSre4E9uSXeHRuSI2/Bx5z9rmvQDjmo8qJFPZUL5e
fpe+3wIc3VFvFnaVDbFv2rBh8ALoy/+LvWzABrWiQ9/MUhdA7Jy/27NCFogv
5opYpC8AZSyiL+kOC+b0pS0tM4h43n8vGPqPBWWljd8P5C5AyWzb90xVFthV
7Ws5VrMAP/hz3UpimHCr1ey3B3UB9mSJsRd3MMBXLnO1F3sB1mPn+0YSDLA7
JuDsLbAI+1MF6mb+0EG1u/Kvr/QiVA3nbskIo0PZ312jgRqLYHx9oudkFQ1m
Z3fMx9ktQtqluQ8rtalwTFpnSX7JIjQPmWz2fESG4POrL24rXwSb/h2RifZk
yG6U/F3ydRFySqckjIl3lB47nVvesgjXXg4w1e7Ow8MleXYNk4tQakvX+i9k
Dv7ybc0eVaLC0msPT3ETpsCbssN8TTQVNPyuf1FePwQ3u8xuxh6nASlzT+C2
rkd4jvzBZ9aJBnXHRibWDrzEjlI6jrZuNHBb92X89mQ+1jOV3650kQYVyWNL
L/eW4tE3w6MFsTTodm6w1HCoxZYhkfu7y2mwlXpVtC6yE0tr1MpqqtMhXDNn
RfyJYRyEjLjx2nTIZlxXapsexmMOeZPzm+lQpb37eWT4CK68c//r5110aNZ9
n7MuZxRfZHhcPnScDkldlSF98+O4o1G0+0osHaoPO2eOnZrGDy7tf/Ztjg6+
j2ysI36Q8f40I+MyKsG7lyKyEKVgZplOVyGbDjEtHMH7uynYUUSG9EyUAUdf
Un73F1Kw0oP2kCBlBqzawPP+d2cBZ1Q4ntp0mAEDmvk7u7ZSsc2QNWudHQMY
eRY/yW5ULCgK91c7MuDeNQF2TCoVux1RaRbzZMCx2MWranQqXj88YjIcwoCP
ydUU8nsafivmo/QgjwGVQ7lR8vIM7KjrUnqnmPCfca3y3C4Gljp6xC7qMwMC
jBqstN0Z+EL6toRLtQwQbY4unyhm4C2b6BzrfgZkpcw93neQiQePTjzYM8IA
3rhn718/Jk4K6Nlu9I8B61+cSelNZeKFL2XnNWkMMLPRt+T2MnGJbdgfARkm
qBMbbacrC7sH+gUy5JlgmdwueS2MhZc/OaMwt5IJNtFK20KesXDAmLn1Hw0m
cGMiXJ71srBRkHj5BxMm/HJU0tSzZuOpJ6wTuXuYwDlzpOmzBxunf51ayNrP
hKdH1RfSw9iYK9msk2THBOeDhvHniti48mlyuvcFJuDWNPU1MhxcNKDgOuzP
hM6otFYNDQ7OVktb53iNCWBV3OxhzMHxL9NzrYg5MwyuirntzsEhE0qXviYw
wWtRRP9iEAf7bXi+w+geE6osl6+Ivc3BJ/JeVGpnMOHH1OHn9gUcbDW/PjLj
FZOYw1g3mSoONtmWs29lHhP+syt+QG/l4C2XdaSTipng++DRH/kBDlb/kNsm
VsaE56NxbWdmOXg5Y/P9sComkNwdlUfYHCxuVHSSUceEc6Xe/mlihD6u+DA8
3skEPvcovhRlLh7kM3zt0ssEJSST91ubiztMy853DTKBt6bnsK0eF9dGmGw9
PMEE5ZOkPI4xF5fWVFJrZ5mQbXkh7dceLn4navYZqEwwNdozMGDFxc/2fwv5
wGbCe7+rZ1bbcHFy/N49mwRZENUTzo06zsVRP+pFX4qxIDjr6n0VR0J/kw40
KZFYgMo4ilOnuNjb5sfd1GUsSJG3vTR6motPpRy2k17DAnbT4XTSWS62+dm2
MkqNBR/1Xe94uXOxueKxfo4WC45m3bJeILCBw6/My5tZcE/j7J93BN6Qbu85