forked from khairulislam/Timeseries-Explained
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
160 lines (133 loc) · 8.17 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse, os, torch, json, random, pickle
from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
from exp.exp_classification import Exp_Classification
from exp.exp_basic import *
import numpy as np
def set_random_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
# torch.backends.cudnn.deterministic = True
def initial_setup(args):
args.use_gpu = True if torch.cuda.is_available() and (not args.use_cpu) else False
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
args.enc_in = args.dec_in = args.c_out = args.n_features
set_random_seed(args.seed)
def main(args):
initial_setup(args)
print('Args in experiment:')
print(args)
if args.task_name == 'classification': Exp = Exp_Classification
else: Exp = Exp_Long_Term_Forecast
parent_seed = args.seed
np.random.seed(parent_seed)
experiment_seeds = np.random.randint(1e3, size=args.itrs)
original_itr = args.itr_no
for itr_no in range(1, args.itrs+1):
if (original_itr is not None) and original_itr != itr_no: continue
args.seed = experiment_seeds[itr_no-1]
print(f'\n>>>> itr_no: {itr_no}, seed: {args.seed} <<<<<<')
set_random_seed(args.seed)
args.itr_no = itr_no
exp = Exp(args) # set experiments
if args.train:
print('>>>>>>> training : >>>>>>>>>')
exp.train()
exp.test(load_model=False, flag='val')
print('>>>>>>> testing : <<<<<<<<<<<')
exp.test(load_model=False, flag='test')
else:
print('>>>>>>> testing : <<<<<<<<<<<<')
exp.test(load_model=True, flag=args.flag)
print()
args.seed = parent_seed
config_filepath = os.path.join(args.result_path, stringify_setting(args), 'config.json')
args.seeds = [int(seed) for seed in experiment_seeds]
with open(config_filepath, 'w') as output_file:
json.dump(vars(args), output_file, indent=4, default=str)
torch.cuda.empty_cache()
def get_parser():
parser = argparse.ArgumentParser(
description='Run Timeseries Models',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# basic config
parser.add_argument('--task_name', type=str, default='long_term_forecast',
choices=['long_term_forecast', 'classification'], help='task name')
parser.add_argument('--train', action='store_true', help='whether to train the model or test')
parser.add_argument('--dry_run', action='store_true', help='runs for a single batch')
parser.add_argument('--model', type=str, required=True, default='Transformer',
choices=list(Exp_Basic.model_dict.keys()), help='model name')
parser.add_argument('--seed', default=2024, help='random seed')
parser.add_argument('--itrs', type=int, default=3, help='experiment repetition time from 1 to itrs')
parser.add_argument('--itr_no', type=int, default=None, help='experiments number among itrs. 1<= itr_no <= itrs .')
# data loader
parser.add_argument('--data', type=str, default='custom', help='dataset type')
parser.add_argument('--result_path', type=str, default='./results', help='root result output folder')
parser.add_argument('--root_path', type=str, default='./dataset/electricity/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='electricity.csv', help='data file')
parser.add_argument('--flag', type=str, default='test', choices=['train', 'val', 'test'],
help='data split type')
parser.add_argument('--features', type=str, default='MS', choices=['M', 'S', 'MS'],
help='forecasting task; M: multivariate predict multivariate, S: univariate predict univariate, MS: multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument(
'--freq', type=str, default='h', choices=['s', 't', 'h', 'd', 'b', 'w', 'm'],
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=24, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# model define
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
parser.add_argument('--n_features', type=int, default=1, help='number of input fetures.')
parser.add_argument('--d_model', type=int, default=128, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=4, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=256, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=3, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--conv_kernel', default=[18, 12], nargs="+", type=int,
help='convolution kernel size list for MICN. Can be [seq_len/2, pred_len].')
parser.add_argument('--seg_len', type=int, default=24,
help='the length of segmen-wise iteration of SegRNN')
# optimization
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=1e-3, help='optimizer learning rate')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_cpu', action='store_true', help='run on cpu. Uses GPU by default')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
# de-stationary projector params
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
help='hidden layer dimensions of projector (List)')
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
parser.add_argument('--augmentation_ratio', type=int, default=0, help="How many times to augment")
# LLM specific params
return parser
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args)