forked from khairulislam/Timeseries-Explained
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_CALF.py
55 lines (41 loc) · 2.06 KB
/
run_CALF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from exp.exp_long_term_forecasting import *
from run import main, get_parser as get_basic_parser
def get_parser():
parser = get_basic_parser()
parser.add_argument(
'--model_id', default='ori', choices=['ori', 'dropAttn_keepWE',
'randomInit', 'llm_to_trsf', 'llm_to_attn']
)
# distillation loss
parser.add_argument('--task_loss', type=str, default='l1', help='task loss function')
parser.add_argument('--feature_loss', type=str, default='l1', help='distillation loss function')
parser.add_argument('--distill_loss', type=str, default='l1', help='distillation loss function')
parser.add_argument('--logits_loss', type=str, default='l1', help='logits loss function')
parser.add_argument('--output_loss', type=str, default='l1', help='logits loss function')
# the rest here is CALF related arguments
parser.add_argument('--tmax', type=int, default=20)
# lora
parser.add_argument('--r', type=int, default=8)
parser.add_argument('--lora_alpha', type=int, default=32)
parser.add_argument('--lora_dropout', type=float, default=0.1)
# align
parser.add_argument('--word_embedding_path', type=str, default="./utils/wte_pca_500.pt")
# loss weight
parser.add_argument('--task_w', type=float, default=1.0)
parser.add_argument('--feature_w', type=float, default=0.01)
parser.add_argument('--logits_w', type=float, default=1.0)
parser.add_argument('--output_w', type=float, default=1.0)
# gpt
parser.add_argument('--gpt_layers', type=int, default=6, help='number of hidden layers in gpt')
# Save Result in this file
parser.add_argument('--log_fine_name', type=str, default='CALF_result.txt')
# Add nosise to wordEmb or Posi
parser.add_argument('--noise_scale',required=False , type=float, default=-100)
parser.add_argument('--bootstrap_eval',required=False , type=int, default=0)
return parser
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
args.model = 'CALF'
args.output_dict = True
main(args)