From c1f86cb2e2e08872af553385dc05a38afd70e915 Mon Sep 17 00:00:00 2001 From: meghdadFar Date: Mon, 8 Apr 2024 07:13:50 +0200 Subject: [PATCH] Add chat; Minor fixes --- wordview/mwes/mwe.py | 67 ++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 64 insertions(+), 3 deletions(-) diff --git a/wordview/mwes/mwe.py b/wordview/mwes/mwe.py index 3a2535c..4249bcb 100644 --- a/wordview/mwes/mwe.py +++ b/wordview/mwes/mwe.py @@ -1,11 +1,14 @@ import re import string +import threading from re import Match from typing import Optional import nltk import pandas +from flask import Flask, jsonify, request, send_from_directory from nltk import RegexpParser, word_tokenize +from openai import OpenAI from tabulate import tabulate # type: ignore from tqdm import tqdm @@ -26,7 +29,9 @@ def is_alphanumeric_latinscript_multigram(word: str) -> Optional[Match[str]]: class MWE: - """Extract MWEs of type LVC, VPC, Noun Compounds, Adjective Compounds, and custom patterns from a text corpus.""" + """Extract MWEs of typeS: + LVC, VPC, Noun Compounds, Adjective Compounds, and custom patterns from a text corpus. + """ def __init__( self, @@ -99,19 +104,75 @@ def __init__( custom_pattern=mwe_patterns, ) + def chat(self, api_key: str = ""): + """Chat with OpenAI's latest model about MWEs . + Access the chat UI in your localhost under http://127.0.0.1:5001/ + + Args: + api_key: OpenAI API key. + + Returns: + None + """ + self.api_key = api_key + self.chat_client = OpenAI(api_key=api_key) + base_content = f"""Answer any questions about the Multiword Expressions (MWEs) that extracted from the uploaded text corpus by Wordview and are presented in the following MWEs dictionary. + \n\n + ------------------------------ + MWEs dictionary: + ------------------------------ + {self.mwes} + \n\n + Important Points:\n + - Answer the questions without including "According/based on to MWEs dictionary".\n + - The format of the above dictionary is as follows:\n + "MWE Type": "MWE instance 1": "Association measure", "MWE instance 2": "Association measure", ...\n + - There could be other custom types in which case you should just mention the dictionary key.\n + - Depending on a parameter N set by the user, each MWE type contains at most N instances. But it can contain less or even 0. + """ + chat_history = [ + {"role": "system", "content": base_content}, + ] + app = Flask(__name__, static_folder="path_to_your_ui_folder") + + @app.route("/") + def index(): + return send_from_directory("../chat_ui", "chat.html") + + @app.route("/chat", methods=["POST"]) + def chat(): + user_input = request.json["message"] + chat_history.append({"role": "user", "content": user_input}) + response = ( + self.chat_client.chat.completions.create( + model="gpt-3.5-turbo", + messages=chat_history, + ) + .choices[0] + .message.content + ) + chat_history.append({"role": "assistant", "content": response}) + return jsonify({"reply": response}) + + def run(): + app.run(port=5001) + + flask_thread = threading.Thread(target=run) + flask_thread.start() + def extract_mwes( self, sort: bool = True, top_n: Optional[int] = None, ) -> dict[str, dict[str, float]]: - """Extract MWEs from the text corpus. + """Extract MWEs from the text corpus and add them to self.mwes. Args: sort: If True, the MWEs will be sorted in descending order of association measure. top_n: If provided, only the top n MWEs will be returned. Returns: - A dictionary containing the MWEs and their association measures. + None. """ for sentence in tqdm(self.reader.get_sentences()): try: