Skip to content

Latest commit

 

History

History
353 lines (287 loc) · 18.6 KB

README.md

File metadata and controls

353 lines (287 loc) · 18.6 KB

Prototypical Contrastive Language Image Pretraining

Welcome to the official PyTorch implementation of ProtoCLIP in our paper ProtoCLIP: Prototypical Contrastive Language Image Pretraining, in IEEE Transactions on Neural Networks and Learning Systems (TNNLS).

by Delong Chen, Zhao Wu, Fan Liu, Zaiquan Yang, Shaoqiu Zheng, Ying Tan, and Erjing, Zhou

Abstract: Contrastive Language Image Pretraining (CLIP) received widespread attention since its learned representations can be transferred well to various downstream tasks. During CLIP training, the InfoNCE objective aims to align positive image-text pairs and separate negative ones. In this paper, we show a representation grouping effect during this process: the InfoNCE objective indirectly groups semantically similar representations together via randomly emerged within-modal anchors.

We introduce Prototypical Contrastive Language Image Pretraining (ProtoCLIP) to enhance such grouping by boosting its efficiency and increasing its robustness against modality gap. Specifically, ProtoCLIP sets up prototype-level discrimination between image and text spaces, which efficiently transfers higher-level structural knowledge. We further propose Prototypical Back Translation (PBT) to decouple representation grouping from representation alignment, resulting in effective learning of meaningful representations under large modality gap. PBT also enables us to introduce additional external teachers with richer prior knowledge. ProtoCLIP is trained with an online episodic training strategy, which makes it can be scaled up to unlimited amounts of data.

Combining the above novel designs, we train our ProtoCLIP on Conceptual Captions and achieved an +5.81% ImageNet linear probing improvement and an +2.01% ImageNet zero-shot classification improvement.

Fig1

protoclip_model_structure

🔔 Updates

  • 2022-06-23: Preprint of ProtoCLIP paper is available on ArXiv. See this url.
  • 2022-06-22: Initial release of ProtoCLIP training code.

🚀 What can you get from this repo

  • Training CLIP and loading pretrained CLIP weights via OpenCLIP.
  • ProtoCLIP implementation.
    • Episodic training
    • Prototypical losses, Prototype Back Translation (PBT)
    • RoBERTa external teacher
  • Evaluations of CLIP and ProtoCLIP, including:
    • Zero-shot classification evaluations on 10 downstream datasets.
    • MS-COCO retrieval and modality gap evaluations.
    • Pytorch-based fast linear probing.
    • Clustering evaluations: Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI).
  • ProtoCLIP visualizations: TSNE and clustered samples.
  • Experimental support of loading pretrained language model as text tower initialization.

Requirements

1. Install Dependencies

  • Create a conda environment and install PyTorch:

    conda create -n protoclip python=3.8
    conda activate protoclip

    This repo requirs PyTorch (1.11.0) and torchvision. Please install them via https://pytorch.org/get-started/locally

  • Clone this repo:

    git clone https://github.com/megvii-research/protoclip
    cd protoclip
    export PYTHONPATH="$PYTHONPATH:$PWD/src"

    Note: If import error is occured later, run export PYTHONPATH="$PYTHONPATH:$PWD/src" again.

  • Install additional dependencies:

    conda install pandas scikit-learn faiss-gpu ftfy tqdm matplotlib pycocotools
    pip install pytorch-transformers
    conda install wandb # if you want to use wandb for better logging

    Note: This codebase integrates pytorch-transformers to initalize the text tower with large pretrained language model (experimental).

2. Prepare Pretraining Data

This codebase reads a CSV file (separated by \t) with two columns: a path to an image ("filepath" by default), and a text caption ("title" by default).

filepath title
path/to/image.jpg A very typical bus station
... ...

The script src/utils/gather_cc.py will collect the Conceptual Captions (CC3M) dataset. First, download the Conceptual Captions URLs from here, then run the following script:

python3 src/utils/gather_cc.py path/to/Train_GCC-training.tsv

Note: The requirement of CC3M validation data of OpenCLIP is removed in this codebase. The CC3M dataset was made public by Google in 2018. As noted in our paper, the number of accessible images keeps drooping due to expired image links. This issue is raised by several recent works. In this work, since we can only collect 2,643,718 images (concurrent to our work, CyCLIP collected 2,631,703 images), we randomly sample a 2,500,000 subset (75% of full CC3M) from them to train our ProtoCLIP. Considering the dropping accessibility of image links in Conceptual Captions, we call for the use of this dataset size (2.5M) in future benchmarking for better comparability.

Note: webdataset is no longer supported in this codebase.

3. Prepare Downstream Data

  • Zero-shot Classification. The preprocessed zero-shot datasets can be downloaded from CLOOB.

  • Linear Probing. We perform linear evaluation on ImageNet, CIFAR10, CIFAR100, and STL10. You need to download the full ImageNet-1k dataset manually. The later three datasets are integrated into torchvision and will be downloaded automatically.

  • Image-text Retrieval. We implement zero-shot image-text retrieval on MS-COCO. Since we do not perform fine-tuning, only the validation split (/val2017) is required here.

    # All downstream datasets shall be stored to <YOUR DATASET ROOT> dictionary:
    <YOUR DATASET ROOT>
        ├── imagenet
        │   ├── train
        │   └── test  
        ├── birdsnap
        │   └── test
        ├── country211
        │   └── test
        ├── flowers102
        │   └── test
        ├── gtsrb
        │   └── test
        ├── stanford_cars
        │   └── test
        ├── ucf101
        │   ├── testlist01
        │   ├── testlist02
        │   └── testlist03   
        └── coco2017
           ├── annotations
           └── val2017 
    

Evaluation

  • Evaluation of pretrained ProtoCLIP

    TODO: Model checkpoint release.

    python src/training/main.py \
        --eval-data-dir '/data/Datasets' --batch-size 32  --workers 8 \
        --zeroshot-frequency 1 --retrieval-frequency 1 --linear-frequency 1 \
        --linear-prob-mode pytorch \
        --add-projection-head \
        --model RN50  --resume 'RELSEASED_CHECKPOINT.pt' 
  • Evaluation of pretrained CLIPs

    This implementation is based on an awesome CLIP re-implementation OpenCLIP. The codebase is developed from version 1.2.1 of OpenCLIP. Therefore, in this codebase, you can also load various pretrained models, as in OpenCLIP. To evaluate these models, you can specify the --model and --pretrained arguments to main.py:

    python src/training/main.py \
        --eval-data-dir '/data/Datasets' --batch-size 32  --workers 8 \
        --zeroshot-frequency 1 --retrieval-frequency 1 --linear-frequency 1 \
        --linear-prob-mode pytorch \
        --model RN50  --pretrained openai 

    To list available pretrained models:

    >>> import open_clip
    >>> open_clip.list_pretrained()
        [('RN50', 'openai'),
        ('RN50', 'yfcc15m'),
        ('RN50', 'cc12m'),
        ('RN50-quickgelu', 'openai'),
        ('RN50-quickgelu', 'yfcc15m'),
        ('RN50-quickgelu', 'cc12m'),
        ('RN101', 'openai'),
        ('RN101', 'yfcc15m'),
        ('RN101-quickgelu', 'openai'),
        ('RN101-quickgelu', 'yfcc15m'),
        ('RN50x4', 'openai'),
        ('RN50x16', 'openai'),
        ('RN50x64', 'openai'),
        ('ViT-B-32', 'openai'),
        ('ViT-B-32', 'laion2b_e16'),
        ('ViT-B-32', 'laion400m_e31'),
        ('ViT-B-32', 'laion400m_e32'),
        ('ViT-B-32-quickgelu', 'openai'),
        ('ViT-B-32-quickgelu', 'laion400m_e31'),
        ('ViT-B-32-quickgelu', 'laion400m_e32'),
        ('ViT-B-16', 'openai'),
        ('ViT-B-16', 'laion400m_e31'),
        ('ViT-B-16', 'laion400m_e32'),
        ('ViT-B-16-plus-240', 'laion400m_e31'),
        ('ViT-B-16-plus-240', 'laion400m_e32'),
        ('ViT-L-14', 'openai'),
        ('ViT-L-14-336', 'openai')] 

Training

Build an External Teacher (optional)

Pretrained RoBERTa language model as the external teacher for ProtoCLIP. We load the pretrained RoBERTa-large weights provided by FAIRSEQ via PyTorch Hub. Run the following script to extract text features from a given .csv file, and reduce the feature dimension from 1024 to 64 by PCA to save memory cost:

python src/utils/RoBERTa.py
>>> Input your csv file: <YOUR-PRETRAING-DATASET-CSV-FILE.csv>
>>> Input your feature file: <FEATURE-CACHE-FILE.npy> (e.g, 'features/RoBERTA_features_CC.npy')

With a single NVIDIA 2080Ti GPU, extracting RoBERTa features from CC2.5M takes about 3 hours and the resulting feature file takes 600+Mb storage.

Note: We used the pooled and normalized feature from RoBERTa:

text_feature = roberta.extract_features(texts)
text_feature = text_feature.mean(dim=1)
text_feature = F.normalize(text_feature, dim=-1)

Sample Single GPU Training

By running commands provided below, following results can be obtained. On a machine with single NVIDIA 2080ti GPU, 16 CPU, and 100GB RAM, CLIP training takes 1.03 days, while ProtoCLIP training takes 1.84 days.

Model Backbone Batch Size ImageNet Linear Prob ImageNet Zero-shot 10 Dataset Zero-shot Avg. COCO Mean Recall
CLIP RN50 64 38.95 12.29 15.30 26.20
ProtoCLIP RN50 64 44.55 14.50 20.48 28.26
  • Train CLIP baseline with ResNet-50 backbone on CC2.5M for 8 epoch, using a single NVIDIA 2080ti GPU:
    python src/training/main.py \
        --dataset-size 2500000 --episode-size 2500000 \
        --train-data '<YOUR-PRETRAING-DATASET-CSV-FILE.csv>' \
        --eval-data-dir '<YOUR DATASET ROOT>' \
        --epochs 8 --save-frequency 2 --batch-size 64 --workers 16 \
        --linear-frequency 8  --zeroshot-frequency 8 --retrieval-frequency 8 \
        --model RN50  --lr 5e-5 --warmup 2000 --wd 0.5 --max-grad-norm 10 \
        --report-to 'tensorboard' --logs logs/single_gpu --copy-codebase \
        --name 'CLIP'
  • Train ProtoCLIP with ResNet-50 backbone on CC2.5M for 8 epoch, using a single NVIDIA 2080ti GPU:
    python src/training/main.py \
        --dataset-size 2500000 --episode-size 200000 \
        --train-data '<YOUR-PRETRAING-DATASET-CSV-FILE.csv>' \
        --eval-data-dir '<YOUR DATASET ROOT>' \
        --augmentation protoclip-light-augmentation \
        --epochs 100 --infonce-warmup-epoch 1 --lit-start-epoch 99 --save-frequency 25 --visualize-frequency 25 --batch-size 64 --workers 16 \
        --clustering-frequency 1 --k 20000 --kmeans-max-iter 20 --kmeans-nredo 3 \
        --linear-frequency 100  --zeroshot-frequency 100 --retrieval-frequency 100 \
        --model RN50  --lr 5e-5 --warmup 2000 --wd 0.5 --max-grad-norm 10 \
        --w-clip 1 --w-proto 1 --w-proto-external 1 --external-teacher '<FEATURE-CACHE-FILE.npy>' \
        --add-projection-head --projection-dim 128 --target-temperature 0.01 --PBT \
        --report-to 'tensorboard' --logs logs/single_gpu --copy-codebase \
        --name 'ProtoCLIP'

Multi GPU Training

CLIP and ProtoCLIP achieve the following downstream performance with CC2.5M:

Model Backbone Batch Size ImageNet Linear Prob ImageNet Zero-shot 10 Dataset Zero-shot Avg. COCO Mean Recall
CLIP RN50 512 49.41 19.46 21.87 36.48
ProtoCLIP RN50 512 55.22 21.47 22.52 35.69
  • Train CLIP baseline with ResNet-50 backbone on CC2.5M for 32 epoch, using 8 NVIDIA 2080ti GPU:

    torchrun --nproc_per_node 8 -m training.main \
        --dataset-size 2500000 --episode-size 2500000 \
        --train-data '<YOUR-PRETRAING-DATASET-CSV-FILE.csv>' \
        --eval-data-dir '<YOUR DATASET ROOT>' \
        --epochs 32 --save-frequency 4 --batch-size 64 --workers 16 \
        --linear-frequency 32  --zeroshot-frequency 32 --retrieval-frequency 32  \
        --model RN50  --lr 5e-4 --warmup 15625 --wd 0.5 --max-grad-norm 10 \
        --report-to 'tensorboard' --logs logs/CC2.5M_32ep_benchmark --copy-codebase \
        --name 'CLIP'
  • Train ProtoCLIP with ResNet-50 backbone on CC2.5M for 32 epoch, using 8 NVIDIA 2080ti GPU:

    torchrun --nproc_per_node 8 -m training.main \
        --dataset-size 2500000 --episode-size 200000 \
        --train-data '<YOUR-PRETRAING-DATASET-CSV-FILE.csv>' \
        --eval-data-dir '<YOUR DATASET ROOT>' \
        --augmentation protoclip-light-augmentation \
        --epochs 400 --infonce-warmup-epoch 1 --lit-start-epoch 399 --save-frequency 50 --visualize-frequency 50 --batch-size 64 --workers 16 \
        --clustering-frequency 1 --k 20000 --kmeans-max-iter 20 --kmeans-nredo 3 \
        --linear-frequency 400  --zeroshot-frequency 400 --retrieval-frequency 400  \
        --model RN50  --lr 5e-4 --warmup 15625 --wd 0.5 --max-grad-norm 10 \
        --w-clip 1 --w-proto 1 --w-proto-external 1 --external-teacher '<FEATURE-CACHE-FILE.npy>' \
        --add-projection-head --projection-dim 128 --target-temperature 0.01 --PBT \
        --report-to 'tensorboard' --logs logs/CC2.5M_32ep_benchmark --copy-codebase \
        --name 'ProtoCLIP'

    Note: Multi node distributed training is not supported yet.

Some Notes on Arguments

Run python src/training/main.py --help to see descriptions of all arguments. Here we provide some explanations of our newly added arguments:

  • --dataset-size trunk the samples with the specified number. To train model with CC2.5M as in the ProtoCLIP paper, use --dataset-size=2500000

  • --episode-size enables episode training. We randomly select args.episode_size (e.g., 0.2M) samples from the entire dataset as an episode by index_mapping[:] = torch.from_numpy(np.random.choice(args.dataset_size, args.episode_size, replace=True)).share_memory_(). Note that we use .share_memory_() to make the index_mapping to be consistant across different subprocess when multiple GPUs are used. It can also be used for dataset shuffling (see this issue) by setting episode size = dataset size.

  • --add-projection-head creates MLP projection heads for image and text towers. ProtoCLIP checkpoints must be loaded with this argument, otherwise, state dict mismatch error will occurred.

  • --PBT enables Prototype Back Translation. It is a prerequisite of applying --external-teacher.

  • --linear-prob-mode we implemented faster pytorch based linaer regression. Specify --linear-prob-mode=sklearn to run sklearn L-BGFS logistic regression on CPU (slow).

  • --visualize-frequency enable T-SNE and cluster visualization for ProtoCLIP. You may want to do visualization sparsely since both of them are time-consuming. Setting --visualize-frequency=-1 as default to skip visualization.

  • --pretrained-text is experimental. It is not used in our ProtoCLIP paper. To load a pretrained $\text{RoBERTa}_\text{base}$, specify --pretrained-text='roberta-base'

  • --resume you can add --resume='/path/to/your/checkpoints/epoch_xx.pt' to resume training.

📈Monitoring Downstream Performances During Training

Experiment will be logged to <Your Experiment Log dir> as following:

<Your Experiment Log dir>
    ├── cache
    ├── checkpoints
    │   ├── epoch_4.pt
    │   ├── epoch_8.pt
    │   ├── epoch_12.pt
    │   ├── epoch_16.pt
    │   ├── epoch_20.pt
    │   ├── epoch_24.pt
    │   ├── epoch_28.pt
    │   ├── epoch_32.pt
    │   └── epoch_latest.pt
    ├── out.log
    ├── params.txt
    ├── results.jsonl
    ├── evaluation_metrics_all.csv
    └── tensorboard
        └── events.out.tfevents

We present an useful tool for monitoring the downstream performance. By running src/utils/evaluate_checkpoints.py and specifying an experiment logging dir, it will read configurations from params.txt and automatically monitor and evaluate checkpoints. The result will be automatically saved as a .csv file (evaluation_metrics_all.csv). You can also specify an individual checkpoint to evaluate.

>>> python src/utils/evaluate_checkpoints.py
Please input your experiment dir: <Your Experiment Log dir>
Specify a checkpoint epoch? (press "enter" to scan and evaluate all checkpoints) 

🎈 Aknowledgements

If you find this project useful for your research, please consider citing our paper:

@article{chen2023prototypical,
    author    = {Delong Chen and
                Zhao Wu and
                Fan Liu and
                Zaiquan Yang and
                Shaoqiu Zheng and
                Ying Tan and
                Erjin Zhou},
    title     = {ProtoCLIP: Prototypical Contrastive Language Image Pretraining},
    journal   = {IEEE Transactions on Neural Networks and Learning Systems (TNNLS)},
    year      = {2023},
}

If you have any problems about ProtoCLIP algorithm or this implementation, create an issue or email chendelong@hhu.edu.cn.