The folder _params
contains two yaml files model.yaml
and trainer.yaml
that specify the model setttings and training procedure respectively.
Please update the configuration accordingly.
Configuaration of the autoencoder
stagate:
name: intSTAGATE
params:
in_features: 3000
architecture: MLP
hidden_dims: [512, 30]
gradient_clipping: 5.0
optimizer:
name: ADAM
params:
lr: 0.0001
weight_decay: 0.0001
scheduler:
name: STEP_LR
params:
step_size: 1000
gamma: 0.9
in_feature
: the dimension of the input featureshidden_dims
: a list indicates the number of neurons of the hidden layersgradient_clipping
: float that controls the optimizationoptimizer
: configuration of the optimizers
Configuaration of the clustering method
clustering:
r_seed: 2020
n_clusters: 7
model_name: EEE
Configuaration of the classifiers
mlp:
balanced: True
test_prop: 0.1
target_class: 3
optimizer:
name: ADAM
params:
lr: 0.001
weight_decay: 0.0001
scheduler:
name: STEP_LR
params:
step_size: 250
gamma: 0.5
Trainer for the autoencoder.
stagate_trainer:
max_epochs: 1000 # Maximum number of epochs to train
min_epochs: 500 # Min number of epochs to train
limit_train_batches: 1.0
limit_val_batches: 1.0
limit_test_batches: 1.0
check_val_every_n_epoch: 100
log_every_n_steps: 2 # How often to add logging rows (does not write to disk)
precision: 32
detect_anomaly: True
auto_select_gpus: True
enable_model_summary: False
gpus: 1 # number of gpus to train on (int) or which GPUs to train on (list or str) applied per node
num_sanity_val_steps: 10
track_grad_norm: -1 # Otherwise tracks that norm (2 for 2-norm)
enable_checkpointing: False
max_epochs
andmin_epochs
controls the number of the trained epochs. We recommend set > 500. We usedmax_epochs: 1000
in all the experiments.- Please refer to the documentation of
pytorch.lightning
for a detailed decription.
Trainer for the classifier.
classifier_trainer:
max_epochs: 300 # Maximum number of epochs to train
min_epochs: 300 # Min number of epochs to train
limit_train_batches: 1.0
limit_val_batches: 1.0
limit_test_batches: 1.0
check_val_every_n_epoch: 100
log_every_n_steps: 2 # How often to add logging rows (does not write to disk)
precision: 32
detect_anomaly: True
gpus: 1 # number of gpus to train on (int) or which GPUs to train on (list or str) applied per node
auto_select_gpus: True
enable_model_summary: False
num_sanity_val_steps: 10
track_grad_norm: -1 # Otherwise tracks that norm (2 for 2-norm)
enable_checkpointing: False