This repository has been archived by the owner on Oct 5, 2022. It is now read-only.
forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
expr_fn.rs
678 lines (618 loc) · 22.4 KB
/
expr_fn.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Functions for creating logical expressions
use crate::expr::GroupingSet;
use crate::{
aggregate_function, built_in_function, conditional_expressions::CaseBuilder, lit,
logical_plan::Subquery, AccumulatorFunctionImplementation, AggregateUDF,
BuiltinScalarFunction, Expr, LogicalPlan, Operator, ReturnTypeFunction,
ScalarFunctionImplementation, ScalarUDF, Signature, StateTypeFunction, Volatility,
};
use arrow::datatypes::DataType;
use datafusion_common::Result;
use std::sync::Arc;
/// Create a column expression based on a qualified or unqualified column name
pub fn col(ident: &str) -> Expr {
Expr::Column(ident.into())
}
/// Return a new expression l <op> r
pub fn binary_expr(l: Expr, op: Operator, r: Expr) -> Expr {
Expr::BinaryExpr {
left: Box::new(l),
op,
right: Box::new(r),
}
}
/// Return a new expression with a logical AND
pub fn and(left: Expr, right: Expr) -> Expr {
Expr::BinaryExpr {
left: Box::new(left),
op: Operator::And,
right: Box::new(right),
}
}
/// Return a new expression with a logical OR
pub fn or(left: Expr, right: Expr) -> Expr {
Expr::BinaryExpr {
left: Box::new(left),
op: Operator::Or,
right: Box::new(right),
}
}
/// Create an expression to represent the min() aggregate function
pub fn min(expr: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::Min,
distinct: false,
args: vec![expr],
}
}
/// Create an expression to represent the max() aggregate function
pub fn max(expr: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::Max,
distinct: false,
args: vec![expr],
}
}
/// Create an expression to represent the sum() aggregate function
pub fn sum(expr: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::Sum,
distinct: false,
args: vec![expr],
}
}
/// Create an expression to represent the avg() aggregate function
pub fn avg(expr: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::Avg,
distinct: false,
args: vec![expr],
}
}
/// Create an expression to represent the count() aggregate function
pub fn count(expr: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::Count,
distinct: false,
args: vec![expr],
}
}
/// Create an expression to represent the count(distinct) aggregate function
pub fn count_distinct(expr: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::Count,
distinct: true,
args: vec![expr],
}
}
/// Create an in_list expression
pub fn in_list(expr: Expr, list: Vec<Expr>, negated: bool) -> Expr {
Expr::InList {
expr: Box::new(expr),
list,
negated,
}
}
/// Concatenates the text representations of all the arguments. NULL arguments are ignored.
pub fn concat(args: &[Expr]) -> Expr {
Expr::ScalarFunction {
fun: built_in_function::BuiltinScalarFunction::Concat,
args: args.to_vec(),
}
}
/// Concatenates all but the first argument, with separators.
/// The first argument is used as the separator string, and should not be NULL.
/// Other NULL arguments are ignored.
pub fn concat_ws(sep: impl Into<String>, values: &[Expr]) -> Expr {
let mut args = vec![lit(sep.into())];
args.extend_from_slice(values);
Expr::ScalarFunction {
fun: built_in_function::BuiltinScalarFunction::ConcatWithSeparator,
args,
}
}
/// Returns a random value in the range 0.0 <= x < 1.0
pub fn random() -> Expr {
Expr::ScalarFunction {
fun: built_in_function::BuiltinScalarFunction::Random,
args: vec![],
}
}
/// Returns the approximate number of distinct input values.
/// This function provides an approximation of count(DISTINCT x).
/// Zero is returned if all input values are null.
/// This function should produce a standard error of 0.81%,
/// which is the standard deviation of the (approximately normal)
/// error distribution over all possible sets.
/// It does not guarantee an upper bound on the error for any specific input set.
pub fn approx_distinct(expr: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::ApproxDistinct,
distinct: false,
args: vec![expr],
}
}
/// Calculate an approximation of the median for `expr`.
pub fn approx_median(expr: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::ApproxMedian,
distinct: false,
args: vec![expr],
}
}
/// Calculate an approximation of the specified `percentile` for `expr`.
pub fn approx_percentile_cont(expr: Expr, percentile: Expr) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::ApproxPercentileCont,
distinct: false,
args: vec![expr, percentile],
}
}
/// Calculate an approximation of the specified `percentile` for `expr` and `weight_expr`.
pub fn approx_percentile_cont_with_weight(
expr: Expr,
weight_expr: Expr,
percentile: Expr,
) -> Expr {
Expr::AggregateFunction {
fun: aggregate_function::AggregateFunction::ApproxPercentileContWithWeight,
distinct: false,
args: vec![expr, weight_expr, percentile],
}
}
/// Create an EXISTS subquery expression
pub fn exists(subquery: Arc<LogicalPlan>) -> Expr {
Expr::Exists {
subquery: Subquery { subquery },
negated: false,
}
}
/// Create a NOT EXISTS subquery expression
pub fn not_exists(subquery: Arc<LogicalPlan>) -> Expr {
Expr::Exists {
subquery: Subquery { subquery },
negated: true,
}
}
/// Create an IN subquery expression
pub fn in_subquery(expr: Expr, subquery: Arc<LogicalPlan>) -> Expr {
Expr::InSubquery {
expr: Box::new(expr),
subquery: Subquery { subquery },
negated: false,
}
}
/// Create a NOT IN subquery expression
pub fn not_in_subquery(expr: Expr, subquery: Arc<LogicalPlan>) -> Expr {
Expr::InSubquery {
expr: Box::new(expr),
subquery: Subquery { subquery },
negated: true,
}
}
/// Create a scalar subquery expression
pub fn scalar_subquery(subquery: Arc<LogicalPlan>) -> Expr {
Expr::ScalarSubquery(Subquery { subquery })
}
/// Create a grouping set
pub fn grouping_set(exprs: Vec<Vec<Expr>>) -> Expr {
Expr::GroupingSet(GroupingSet::GroupingSets(exprs))
}
/// Create a grouping set for all combination of `exprs`
pub fn cube(exprs: Vec<Expr>) -> Expr {
Expr::GroupingSet(GroupingSet::Cube(exprs))
}
/// Create a grouping set for rollup
pub fn rollup(exprs: Vec<Expr>) -> Expr {
Expr::GroupingSet(GroupingSet::Rollup(exprs))
}
/// Create a cast expression
pub fn cast(expr: Expr, data_type: DataType) -> Expr {
Expr::Cast {
expr: Box::new(expr),
data_type,
}
}
/// Create an convenience function representing a unary scalar function
macro_rules! unary_scalar_expr {
($ENUM:ident, $FUNC:ident, $DOC:expr) => {
#[doc = $DOC ]
pub fn $FUNC(e: Expr) -> Expr {
Expr::ScalarFunction {
fun: built_in_function::BuiltinScalarFunction::$ENUM,
args: vec![e],
}
}
};
}
macro_rules! scalar_expr {
($ENUM:ident, $FUNC:ident, $($arg:ident),*) => {
#[doc = concat!("Scalar function definition for ", stringify!($FUNC) ) ]
pub fn $FUNC($($arg: Expr),*) -> Expr {
Expr::ScalarFunction {
fun: built_in_function::BuiltinScalarFunction::$ENUM,
args: vec![$($arg),*],
}
}
};
}
macro_rules! nary_scalar_expr {
($ENUM:ident, $FUNC:ident) => {
#[doc = concat!("Scalar function definition for ", stringify!($FUNC) ) ]
pub fn $FUNC(args: Vec<Expr>) -> Expr {
Expr::ScalarFunction {
fun: built_in_function::BuiltinScalarFunction::$ENUM,
args,
}
}
};
}
// generate methods for creating the supported unary/binary expressions
// math functions
unary_scalar_expr!(Sqrt, sqrt, "square root of a number");
unary_scalar_expr!(Sin, sin, "sine");
unary_scalar_expr!(Cos, cos, "cosine");
unary_scalar_expr!(Tan, tan, "tangent");
unary_scalar_expr!(Asin, asin, "inverse sine");
unary_scalar_expr!(Acos, acos, "inverse cosine");
unary_scalar_expr!(Atan, atan, "inverse tangent");
unary_scalar_expr!(
Floor,
floor,
"nearest integer less than or equal to argument"
);
unary_scalar_expr!(
Ceil,
ceil,
"nearest integer greater than or equal to argument"
);
unary_scalar_expr!(Round, round, "round to nearest integer");
unary_scalar_expr!(Trunc, trunc, "truncate toward zero");
unary_scalar_expr!(Abs, abs, "absolute value");
unary_scalar_expr!(Signum, signum, "sign of the argument (-1, 0, +1) ");
unary_scalar_expr!(Exp, exp, "base 2 logarithm");
unary_scalar_expr!(Log2, log2, "base 10 logarithm");
unary_scalar_expr!(Log10, log10, "base 10 logarithm");
unary_scalar_expr!(Ln, ln, "natural logarithm");
scalar_expr!(NullIf, nullif, arg_1, arg_2);
scalar_expr!(Power, power, base, exponent);
scalar_expr!(Atan2, atan2, y, x);
// string functions
scalar_expr!(Ascii, ascii, string);
scalar_expr!(BitLength, bit_length, string);
scalar_expr!(CharacterLength, character_length, string);
scalar_expr!(CharacterLength, length, string);
scalar_expr!(Chr, chr, string);
scalar_expr!(Digest, digest, input, algorithm);
scalar_expr!(InitCap, initcap, string);
scalar_expr!(Left, left, string, count);
scalar_expr!(Lower, lower, string);
scalar_expr!(Ltrim, ltrim, string);
scalar_expr!(MD5, md5, string);
scalar_expr!(OctetLength, octet_length, string);
scalar_expr!(Replace, replace, string, from, to);
scalar_expr!(Repeat, repeat, string, count);
scalar_expr!(Reverse, reverse, string);
scalar_expr!(Right, right, string, count);
scalar_expr!(Rtrim, rtrim, string);
scalar_expr!(SHA224, sha224, string);
scalar_expr!(SHA256, sha256, string);
scalar_expr!(SHA384, sha384, string);
scalar_expr!(SHA512, sha512, string);
scalar_expr!(SplitPart, split_part, expr, delimiter, index);
scalar_expr!(StartsWith, starts_with, string, characters);
scalar_expr!(Strpos, strpos, string, substring);
scalar_expr!(Substr, substr, string, position);
scalar_expr!(ToHex, to_hex, string);
scalar_expr!(Translate, translate, string, from, to);
scalar_expr!(Trim, trim, string);
scalar_expr!(Upper, upper, string);
//use vec as parameter
nary_scalar_expr!(Lpad, lpad);
nary_scalar_expr!(Rpad, rpad);
nary_scalar_expr!(RegexpReplace, regexp_replace);
nary_scalar_expr!(RegexpMatch, regexp_match);
nary_scalar_expr!(Btrim, btrim);
//there is a func concat_ws before, so use concat_ws_expr as name.c
nary_scalar_expr!(ConcatWithSeparator, concat_ws_expr);
nary_scalar_expr!(Concat, concat_expr);
// date functions
scalar_expr!(DatePart, date_part, part, date);
scalar_expr!(DateTrunc, date_trunc, part, date);
scalar_expr!(DateBin, date_bin, stride, source, origin);
scalar_expr!(ToTimestampMillis, to_timestamp_millis, date);
scalar_expr!(ToTimestampMicros, to_timestamp_micros, date);
scalar_expr!(ToTimestampSeconds, to_timestamp_seconds, date);
scalar_expr!(FromUnixtime, from_unixtime, unixtime);
unary_scalar_expr!(ArrowTypeof, arrow_typeof, "data type");
/// Returns an array of fixed size with each argument on it.
pub fn array(args: Vec<Expr>) -> Expr {
Expr::ScalarFunction {
fun: built_in_function::BuiltinScalarFunction::MakeArray,
args,
}
}
/// Returns `coalesce(args...)`, which evaluates to the value of the first [Expr]
/// which is not NULL
pub fn coalesce(args: Vec<Expr>) -> Expr {
Expr::ScalarFunction {
fun: built_in_function::BuiltinScalarFunction::Coalesce,
args,
}
}
/// Returns current timestamp in nanoseconds, using the same value for all instances of now() in
/// same statement.
pub fn now() -> Expr {
Expr::ScalarFunction {
fun: BuiltinScalarFunction::Now,
args: vec![],
}
}
/// Create a CASE WHEN statement with literal WHEN expressions for comparison to the base expression.
pub fn case(expr: Expr) -> CaseBuilder {
CaseBuilder::new(Some(Box::new(expr)), vec![], vec![], None)
}
/// Create a CASE WHEN statement with boolean WHEN expressions and no base expression.
pub fn when(when: Expr, then: Expr) -> CaseBuilder {
CaseBuilder::new(None, vec![when], vec![then], None)
}
/// Combines an array of filter expressions into a single filter expression
/// consisting of the input filter expressions joined with logical AND.
/// Returns None if the filters array is empty.
pub fn combine_filters(filters: &[Expr]) -> Option<Expr> {
if filters.is_empty() {
return None;
}
let combined_filter = filters
.iter()
.skip(1)
.fold(filters[0].clone(), |acc, filter| and(acc, filter.clone()));
Some(combined_filter)
}
/// Recursively un-alias an expressions
#[inline]
pub fn unalias(expr: Expr) -> Expr {
match expr {
Expr::Alias(sub_expr, _) => unalias(*sub_expr),
_ => expr,
}
}
/// Creates a new UDF with a specific signature and specific return type.
/// This is a helper function to create a new UDF.
/// The function `create_udf` returns a subset of all possible `ScalarFunction`:
/// * the UDF has a fixed return type
/// * the UDF has a fixed signature (e.g. [f64, f64])
pub fn create_udf(
name: &str,
input_types: Vec<DataType>,
return_type: Arc<DataType>,
volatility: Volatility,
fun: ScalarFunctionImplementation,
) -> ScalarUDF {
let return_type: ReturnTypeFunction = Arc::new(move |_| Ok(return_type.clone()));
ScalarUDF::new(
name,
&Signature::exact(input_types, volatility),
&return_type,
&fun,
)
}
/// Creates a new UDAF with a specific signature, state type and return type.
/// The signature and state type must match the `Accumulator's implementation`.
#[allow(clippy::rc_buffer)]
pub fn create_udaf(
name: &str,
input_type: DataType,
return_type: Arc<DataType>,
volatility: Volatility,
accumulator: AccumulatorFunctionImplementation,
state_type: Arc<Vec<DataType>>,
) -> AggregateUDF {
let return_type: ReturnTypeFunction = Arc::new(move |_| Ok(return_type.clone()));
let state_type: StateTypeFunction = Arc::new(move |_| Ok(state_type.clone()));
AggregateUDF::new(
name,
&Signature::exact(vec![input_type], volatility),
&return_type,
&accumulator,
&state_type,
)
}
/// Calls a named built in function
/// ```
/// use datafusion_expr::{col, lit, call_fn};
///
/// // create the expression sin(x) < 0.2
/// let expr = call_fn("sin", vec![col("x")]).unwrap().lt(lit(0.2));
/// ```
pub fn call_fn(name: impl AsRef<str>, args: Vec<Expr>) -> Result<Expr> {
match name.as_ref().parse::<BuiltinScalarFunction>() {
Ok(fun) => Ok(Expr::ScalarFunction { fun, args }),
Err(e) => Err(e),
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn filter_is_null_and_is_not_null() {
let col_null = col("col1");
let col_not_null = col("col2");
assert_eq!(format!("{:?}", col_null.is_null()), "#col1 IS NULL");
assert_eq!(
format!("{:?}", col_not_null.is_not_null()),
"#col2 IS NOT NULL"
);
}
macro_rules! test_unary_scalar_expr {
($ENUM:ident, $FUNC:ident) => {{
if let Expr::ScalarFunction { fun, args } = $FUNC(col("tableA.a")) {
let name = built_in_function::BuiltinScalarFunction::$ENUM;
assert_eq!(name, fun);
assert_eq!(1, args.len());
} else {
assert!(false, "unexpected");
}
}};
}
macro_rules! test_scalar_expr {
($ENUM:ident, $FUNC:ident, $($arg:ident),*) => {
let expected = vec![$(stringify!($arg)),*];
let result = $FUNC(
$(
col(stringify!($arg.to_string()))
),*
);
if let Expr::ScalarFunction { fun, args } = result {
let name = built_in_function::BuiltinScalarFunction::$ENUM;
assert_eq!(name, fun);
assert_eq!(expected.len(), args.len());
} else {
assert!(false, "unexpected: {:?}", result);
}
};
}
macro_rules! test_nary_scalar_expr {
($ENUM:ident, $FUNC:ident, $($arg:ident),*) => {
let expected = vec![$(stringify!($arg)),*];
let result = $FUNC(
vec![
$(
col(stringify!($arg.to_string()))
),*
]
);
if let Expr::ScalarFunction { fun, args } = result {
let name = built_in_function::BuiltinScalarFunction::$ENUM;
assert_eq!(name, fun);
assert_eq!(expected.len(), args.len());
} else {
assert!(false, "unexpected: {:?}", result);
}
};
}
#[test]
fn scalar_function_definitions() {
test_unary_scalar_expr!(Sqrt, sqrt);
test_unary_scalar_expr!(Sin, sin);
test_unary_scalar_expr!(Cos, cos);
test_unary_scalar_expr!(Tan, tan);
test_unary_scalar_expr!(Asin, asin);
test_unary_scalar_expr!(Acos, acos);
test_unary_scalar_expr!(Atan, atan);
test_unary_scalar_expr!(Floor, floor);
test_unary_scalar_expr!(Ceil, ceil);
test_unary_scalar_expr!(Round, round);
test_unary_scalar_expr!(Trunc, trunc);
test_unary_scalar_expr!(Abs, abs);
test_unary_scalar_expr!(Signum, signum);
test_unary_scalar_expr!(Exp, exp);
test_unary_scalar_expr!(Log2, log2);
test_unary_scalar_expr!(Log10, log10);
test_unary_scalar_expr!(Ln, ln);
test_scalar_expr!(Atan2, atan2, y, x);
test_scalar_expr!(Ascii, ascii, input);
test_scalar_expr!(BitLength, bit_length, string);
test_nary_scalar_expr!(Btrim, btrim, string);
test_nary_scalar_expr!(Btrim, btrim, string, characters);
test_scalar_expr!(CharacterLength, character_length, string);
test_scalar_expr!(CharacterLength, length, string);
test_scalar_expr!(Chr, chr, string);
test_scalar_expr!(Digest, digest, string, algorithm);
test_scalar_expr!(InitCap, initcap, string);
test_scalar_expr!(Left, left, string, count);
test_scalar_expr!(Lower, lower, string);
test_nary_scalar_expr!(Lpad, lpad, string, count);
test_nary_scalar_expr!(Lpad, lpad, string, count, characters);
test_scalar_expr!(Ltrim, ltrim, string);
test_scalar_expr!(MD5, md5, string);
test_scalar_expr!(OctetLength, octet_length, string);
test_nary_scalar_expr!(RegexpMatch, regexp_match, string, pattern);
test_nary_scalar_expr!(RegexpMatch, regexp_match, string, pattern, flags);
test_nary_scalar_expr!(
RegexpReplace,
regexp_replace,
string,
pattern,
replacement
);
test_nary_scalar_expr!(
RegexpReplace,
regexp_replace,
string,
pattern,
replacement,
flags
);
test_scalar_expr!(Replace, replace, string, from, to);
test_scalar_expr!(Repeat, repeat, string, count);
test_scalar_expr!(Reverse, reverse, string);
test_scalar_expr!(Right, right, string, count);
test_nary_scalar_expr!(Rpad, rpad, string, count);
test_nary_scalar_expr!(Rpad, rpad, string, count, characters);
test_scalar_expr!(Rtrim, rtrim, string);
test_scalar_expr!(SHA224, sha224, string);
test_scalar_expr!(SHA256, sha256, string);
test_scalar_expr!(SHA384, sha384, string);
test_scalar_expr!(SHA512, sha512, string);
test_scalar_expr!(SplitPart, split_part, expr, delimiter, index);
test_scalar_expr!(StartsWith, starts_with, string, characters);
test_scalar_expr!(Strpos, strpos, string, substring);
test_scalar_expr!(Substr, substr, string, position);
test_scalar_expr!(ToHex, to_hex, string);
test_scalar_expr!(Translate, translate, string, from, to);
test_scalar_expr!(Trim, trim, string);
test_scalar_expr!(Upper, upper, string);
test_scalar_expr!(DatePart, date_part, part, date);
test_scalar_expr!(DateTrunc, date_trunc, part, date);
test_scalar_expr!(DateBin, date_bin, stride, source, origin);
test_scalar_expr!(FromUnixtime, from_unixtime, unixtime);
test_unary_scalar_expr!(ArrowTypeof, arrow_typeof);
}
#[test]
fn digest_function_definitions() {
if let Expr::ScalarFunction { fun, args } = digest(col("tableA.a"), lit("md5")) {
let name = BuiltinScalarFunction::Digest;
assert_eq!(name, fun);
assert_eq!(2, args.len());
} else {
unreachable!();
}
}
#[test]
fn combine_zero_filters() {
let result = combine_filters(&[]);
assert_eq!(result, None);
}
#[test]
fn combine_one_filter() {
let filter = binary_expr(col("c1"), Operator::Lt, lit(1));
let result = combine_filters(&[filter.clone()]);
assert_eq!(result, Some(filter));
}
#[test]
fn combine_multiple_filters() {
let filter1 = binary_expr(col("c1"), Operator::Lt, lit(1));
let filter2 = binary_expr(col("c2"), Operator::Lt, lit(2));
let filter3 = binary_expr(col("c3"), Operator::Lt, lit(3));
let result =
combine_filters(&[filter1.clone(), filter2.clone(), filter3.clone()]);
assert_eq!(result, Some(and(and(filter1, filter2), filter3)));
}
}