-
Notifications
You must be signed in to change notification settings - Fork 9
/
ap3.py
845 lines (686 loc) · 28.4 KB
/
ap3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
"""
Package that allows you to plot simple graphs in ASCII, a la matplotlib.
This package is a inspired from Imri Goldberg's ASCII-Plotter 1.0
(https://pypi.python.org/pypi/ASCII-Plotter/1.0)
At a time I was enoyed by security not giving me direct access to my computer,
and thus to quickly make figures from python, I looked at how I could make
quick and dirty ASCII figures. But if I were to develop something, I wanted
something that can be used with just python and possible standard-ish packages
(numpy, scipy).
So I came up with this package after many iterations based of ASCII-plotter.
I added the feature to show multiple curves on one plot with different markers.
And I also made the usage, close to matplotlib, such that there is a plot,
hist, hist2d and imshow functions.
TODO:
imshow does not plot axis yet.
make a correct documentation
"""
import math as _math
import numpy as np
from typing import Iterable, Sequence, Tuple, Union, List
__version__ = 1.0
__author__ = 'M. Fouesneau'
__all__ = ['markers', 'ACanvas', 'AData', 'AFigure',
'hist', 'hist2d', 'imshow', 'percentile_imshow',
'plot', 'stem', 'stemify', 'step', 'steppify',
'__version__', '__author__']
Number = Union[int, float]
markers = { '-' : u'None' , # solid line style
',': u'\u2219', # point marker
'.': u'\u2218', # pixel marker
'.f': u'\u2218', # pixel marker
'o': u'\u25CB', # circle marker
'of': u'\u25CF', # circle marker
'v': u'\u25BD', # triangle_down marker
'vf': u'\u25BC', # filler triangle_down marker
'^': u'\u25B3', # triangle_up marker
'^f': u'\u25B2', # filled triangle_up marker
'<': u'\u25C1', # triangle_left marker
'<f': u'\u25C0', # filled triangle_left marker
'>': u'\u25B7', # triangle_right marker
'>f': u'\u25B6', # filled triangle_right marker
's': u'\u25FD', # square marker
'sf': u'\u25FC', # square marker
'*': u'\u2606', # star marker
'*f': u'\u2605', # star marker
'+': u'\u271A', # plus marker
'x': u'\u274C', # x marker
'd': u'\u25C7', # diamond marker
'df': u'\u25C6' # filled diamond marker
}
def _sign(x: Number) -> int:
""" Return the sign of x
parameters
----------
x: number
value to get the sign of
returns
-------
s: signed int
-1, 0 or 1 if negative, null or positive
"""
if (x > 0):
return 1
elif (x == 0):
return 0
else:
return -1
def _transpose(mat: List[List]) -> List[List]:
""" Transpose matrice made of lists
parameters
------
mat: iterable 2d list like
return
-------
r: list of list, 2d list like
transposed matrice
"""
r = [ [x[i] for x in mat] for i in range(len(mat[0])) ]
return r
def _y_reverse(mat: List[List]) -> List[List]:
""" Reverse the y axis of a 2d list-like
parameters
------
mat: list of lists
the matrix to reverse on axis 0
returns
-------
r: list of lists
the reversed version
"""
r = [ list(reversed(mat_i)) for mat_i in mat ]
return r
class AData(object):
""" Data container for ascii AFigure """
def __init__(self, x: Iterable, y: Iterable,
marker: str = '_.',
plot_slope: bool = True):
""" Constructor
parameters
----------
x: iterable
x values
y: iterable
y values
marker: str
marker for the data.
if None or empty, the curve will be plotted
if the first character of the marker is '_' then unicode markers will be called:
marker repr description
======== =========== =============================
'-' u'None' solid line style
',' u'\u2219' point marker
'.' u'\u2218' pixel marker
'.f' u'\u2218' pixel marker
'o' u'\u25CB' circle marker
'of' u'\u25CF' circle marker
'v' u'\u25BD' triangle_down marker
'vf' u'\u25BC' filler triangle_down marker
'^' u'\u25B3' triangle_up marker
'^f' u'\u25B2' filled triangle_up marker
'<' u'\u25C1' triangle_left marker
'<f' u'\u25C0' filled triangle_left marker
'>' u'\u25B7' triangle_right marker
'>f' u'\u25B6' filled triangle_right marker
's' u'\u25FD' square marker
'sf' u'\u25FC' square marker
'*' u'\u2606' star marker
'*f' u'\u2605' star marker
'+' u'\u271A' plus marker
'x' u'\u274C' x marker
'd' u'\u25C7' diamond marker
'df' u'\u25C6' filled diamond marker
plot_slope: bool
if set, the curve will be plotted
"""
self.x = x
self.y = y
self.plot_slope = plot_slope
self.set_marker(marker)
def set_marker(self, marker: str) -> None:
""" set the marker of the data
parameters
----------
marker: str
marker for the data.
see constructor for marker descriptions
"""
if marker in [None, 'None', u'None', '']:
self.plot_slope = True
self.marker = ''
elif marker[0] == '_':
self.marker = markers[marker[1:]]
else:
self.marker = marker
def extent(self) -> Tuple[Number, Number, Number, Number]:
""" return the extention of the data
OUPUTS
------
e: list
[ min(x), max(x), min(y), max(y) ]
"""
return [min(self.x), max(self.x), min(self.y), max(self.y)]
def __repr__(self) -> str:
s = 'AData: %s\n' % object.__repr__(self)
return s
class ACanvas(object):
""" Canvas of a AFigure instance. A Canvas handles all transformations
between data space and figure space accounting for scaling and pixels
In general there is no need to access the canvas directly
"""
def __init__(self,
shape: Sequence[Number] = None,
margins: Sequence[Number] = None,
xlim: Sequence[Number] = None,
ylim: Sequence[Number] = None):
""" Constructor
parameters
----------
shape: tuple of 2 ints
shape of the canvas in number of characters: (width, height)
margins: tuple of 2 floats
fractional margins
xlim: tuple of 2 floats
limits of the xaxis
ylim: tuple of 2 floats
limits of the yaxis
"""
self.shape = shape or (50, 20)
self.margins = margins or (0.05, 0.1)
self._xlim = xlim or [0, 1]
self._ylim = ylim or [0, 1]
self.auto_adjust = True
self.margin_factor = 1
@property
def x_size(self) -> int:
""" return the width """
return self.shape[0]
@property
def y_size(self) -> int:
""" return the height """
return self.shape[1]
@property
def x_margin(self) -> int:
""" return the margin in x """
return self.margins[0]
@property
def y_margin(self) -> int:
""" return the margin in y """
return self.margins[1]
def xlim(self, vmin: Number = None, vmax: Number = None):
"""
Get or set the *x* limits of the current axes.
parameters
----------
vmin: float
lower limit
vmax: float
upper limit
xmin, xmax = xlim() # return the current xlim
xlim( (xmin, xmax) ) # set the xlim to xmin, xmax
xlim( xmin, xmax ) # set the xlim to xmin, xmax
"""
if vmin is None and vmax is None:
return self._xlim
elif hasattr(vmin, '__iter__'):
self._xlim = vmin[:2]
else:
self._xlim = [vmin, vmax]
if self._xlim[0] == self._xlim[1]:
self._xlim[1] += 1
self._xlim[0] -= self.x_mod
self._xlim[1] += self.x_mod
def ylim(self, vmin: Number = None, vmax: Number = None):
"""
Get or set the *y* limits of the current axes.
parameters
----------
vmin: float
lower limit
vmax: float
upper limit
ymin, ymax = ylim() # return the current ylim
ylim( (ymin, ymax) ) # set the ylim to ymin, ymax
ylim( ymin, ymax ) # set the ylim to ymin, ymax
"""
if vmin is None and vmax is None:
return self._ylim
elif hasattr(vmin, '__iter__'):
self._ylim = vmin[:2]
else:
self._ylim = [vmin, vmax]
if self._ylim[0] == self._ylim[1]:
self._ylim[1] += 1
self._ylim[0] -= self.y_mod
self._ylim[1] += self.y_mod
@property
def min_x(self) -> Number:
""" return the lower x limit """
return self._xlim[0]
@property
def max_x(self) -> Number:
""" return the upper x limit """
return self._xlim[1]
@property
def min_y(self) -> Number:
""" return the lower y limit """
return self._ylim[0]
@property
def max_y(self) -> Number:
""" return the upper y limit """
return self._ylim[1]
@property
def x_step(self) -> Number:
return float(self.max_x - self.min_x) / float(self.x_size)
@property
def y_step(self) -> Number:
return float(self.max_y - self.min_y) / float(self.y_size)
@property
def ratio(self) -> Number:
return self.y_step / self.x_step
@property
def x_mod(self) -> Number:
return (self.max_x - self.min_x) * self.x_margin
@property
def y_mod(self) -> Number:
return (self.max_y - self.min_y) * self.y_margin
def extent(self, margin_factor: Number = None) -> Tuple[Number, Number, Number, Number]:
margin_factor = margin_factor or self.margin_factor
min_x = (self.min_x + self.x_mod * margin_factor)
max_x = (self.max_x - self.x_mod * margin_factor)
min_y = (self.min_y + self.y_mod * margin_factor)
max_y = (self.max_y - self.y_mod * margin_factor)
return (min_x, max_x, min_y, max_y)
def extent_str(self, margin: Number = None) -> Tuple[str, str, str, str]:
def transform(val: Number, fmt: str) -> str:
if abs(val) < 1:
_str = "%+.2g" % val
elif fmt is not None:
_str = fmt % val
else:
_str = None
return _str
e = self.extent(margin)
xfmt = self.x_str()
yfmt = self.y_str()
return transform(e[0], xfmt), transform(e[1], xfmt), transform(e[2], yfmt), transform(e[3], yfmt)
def x_str(self) -> str:
if self.x_size < 16:
x_str = None
elif self.x_size < 23:
x_str = "%+.2g"
else:
x_str = "%+g"
return x_str
def y_str(self) -> str:
if self.x_size < 8:
y_str = None
elif self.x_size < 11:
y_str = "%+.2g"
else:
y_str = "%+g"
return y_str
def coords_inside_buffer(self, x: Number, y: Number)-> bool:
return (0 <= x < self.x_size) and (0 < y < self.y_size)
def coords_inside_data(self, x: Number, y: Number)-> bool:
""" return if (x,y) covered by the data box
x, y: float
coordinates to test
"""
return (self.min_x <= x < self.max_x) and (self.min_y <= y < self.max_y)
def _clip_line(self, line_pt_1: Sequence, line_pt_2: Sequence) -> Tuple[Sequence, Sequence]:
""" clip a line to the canvas """
e = self.extent()
x_min = min(line_pt_1[0], line_pt_2[0])
x_max = max(line_pt_1[0], line_pt_2[0])
y_min = min(line_pt_1[1], line_pt_2[1])
y_max = max(line_pt_1[1], line_pt_2[1])
if line_pt_1[0] == line_pt_2[0]:
return ( ( line_pt_1[0], max(y_min, e[1]) ),
( line_pt_1[0], min(y_max, e[3]) ))
if line_pt_1[1] == line_pt_2[1]:
return ( ( max(x_min, e[0]), line_pt_1[1] ),
( min(x_max, e[2]), line_pt_1[1] ))
if ( (e[0] <= line_pt_1[0] < e[2]) and
(e[1] <= line_pt_1[1] < e[3]) and
(e[0] <= line_pt_2[0] < e[2]) and
(e[1] <= line_pt_2[1] < e[3]) ):
return line_pt_1, line_pt_2
ts = [0.0,
1.0,
float(e[0] - line_pt_1[0]) / (line_pt_2[0] - line_pt_1[0]),
float(e[2] - line_pt_1[0]) / (line_pt_2[0] - line_pt_1[0]),
float(e[1] - line_pt_1[1]) / (line_pt_2[1] - line_pt_1[1]),
float(e[3] - line_pt_1[1]) / (line_pt_2[1] - line_pt_1[1])
]
ts.sort()
if (ts[2] < 0) or (ts[2] >= 1) or (ts[3] < 0) or (ts[2] >= 1):
return None
result = [(pt_1 + t * (pt_2 - pt_1)) for t in (ts[2], ts[3]) for (pt_1, pt_2) in zip(line_pt_1, line_pt_2)]
return ( result[:2], result[2:] )
class AFigure(object):
def __init__(self,
shape: Tuple[Number, Number] = (80, 20),
margins: Tuple[Number, Number] = (0.05, 0.1),
draw_axes: bool = True,
newline: str = '\n',
plot_labels: bool =True,
xlim: Sequence[Number] = None,
ylim: Sequence[Number] = None,
**kwargs):
self.canvas = ACanvas(shape, margins=margins, xlim=xlim, ylim=ylim)
self.draw_axes = draw_axes
self.new_line = newline
self.plot_labels = plot_labels
self.output_buffer = None
self.tickSymbols = u'\u253C' # "+"
self.x_axis_symbol = u'\u2500' # u"\u23bc" # "-"
self.y_axis_symbol = u'\u2502' # "|"
self.data = []
def xlim(self, vmin: Number = None, vmax: Number = None) -> Tuple[Number, Number]:
return self.canvas.xlim(vmin, vmax)
def ylim(self, vmin: Number = None, vmax: Number = None) -> Tuple[Number, Number]:
return self.canvas.ylim(vmin, vmax)
def get_coord(self, val: Number, min: Number, step: Number,
limits: Sequence[Number] = None) -> Number:
result = int((val - min) / step)
if limits is not None:
if result <= limits[0]:
result = limits[0]
elif result >= limits[1]:
result = limits[1] - 1
return result
def _draw_axes(self):
zero_x = self.get_coord(0, self.canvas.min_x, self.canvas.x_step, limits=[1, self.canvas.x_size])
if zero_x >= self.canvas.x_size:
zero_x = self.canvas.x_size - 1
for y in range(self.canvas.y_size):
self.output_buffer[zero_x][y] = self.y_axis_symbol
zero_y = self.get_coord(0, self.canvas.min_y, self.canvas.y_step, limits=[1, self.canvas.y_size])
if zero_y >= self.canvas.y_size:
zero_y = self.canvas.y_size - 1
for x in range(self.canvas.x_size):
self.output_buffer[x][zero_y] = self.x_axis_symbol # u'\u23bc'
self.output_buffer[zero_x][zero_y] = self.tickSymbols # "+"
def _get_symbol_by_slope(self, slope: Number, default_symbol: str) -> str:
""" Return a line oriented directed approximatively along the slope value """
if slope > _math.tan(3 * _math.pi / 8):
draw_symbol = "|"
elif _math.tan(_math.pi / 8) < slope < _math.tan(3 * _math.pi / 8):
draw_symbol = u'\u27cb' # "/"
elif abs(slope) < _math.tan(_math.pi / 8):
draw_symbol = "-"
elif slope < _math.tan(-_math.pi / 8) and slope > _math.tan(-3 * _math.pi / 8):
draw_symbol = u'\u27CD' # "\\"
elif slope < _math.tan(-3 * _math.pi / 8):
draw_symbol = "|"
else:
draw_symbol = default_symbol
return draw_symbol
def _plot_labels(self):
if self.canvas.y_size < 2:
return
act_min_x, act_max_x, act_min_y, act_max_y = self.canvas.extent()
min_x_coord = self.get_coord(act_min_x, self.canvas.min_x, self.canvas.x_step, limits=[0, self.canvas.x_size])
max_x_coord = self.get_coord(act_max_x, self.canvas.min_x, self.canvas.x_step, limits=[0, self.canvas.x_size])
min_y_coord = self.get_coord(act_min_y, self.canvas.min_y, self.canvas.y_step, limits=[1, self.canvas.y_size])
max_y_coord = self.get_coord(act_max_y, self.canvas.min_y, self.canvas.y_step, limits=[1, self.canvas.y_size])
x_zero_coord = self.get_coord(0, self.canvas.min_x, self.canvas.x_step, limits=[0, self.canvas.x_size])
y_zero_coord = self.get_coord(0, self.canvas.min_y, self.canvas.y_step, limits=[1, self.canvas.y_size])
self.output_buffer[x_zero_coord][min_y_coord] = self.tickSymbols
self.output_buffer[x_zero_coord][max_y_coord] = self.tickSymbols
self.output_buffer[min_x_coord][y_zero_coord] = self.tickSymbols
self.output_buffer[max_x_coord][y_zero_coord] = self.tickSymbols
min_x_str, max_x_str, min_y_str, max_y_str = self.canvas.extent_str()
if (self.canvas.x_str() is not None):
for i, c in enumerate(min_x_str):
self.output_buffer[min_x_coord + i + 1][y_zero_coord - 1] = c
for i, c in enumerate(max_x_str):
self.output_buffer[max_x_coord + i - len(max_x_str)][y_zero_coord - 1] = c
if (self.canvas.y_str() is not None):
for i, c in enumerate(max_y_str):
self.output_buffer[x_zero_coord + i + 1][max_y_coord] = c
for i, c in enumerate(min_y_str):
self.output_buffer[x_zero_coord + i + 1][min_y_coord] = c
def _plot_line(self,
start: Sequence[Number],
end: Sequence[Number],
data: AData) -> bool:
""" plot a line from start = (x0, y0) to end = (x1, y1) """
clipped_line = self.canvas._clip_line(start, end)
if clipped_line is None:
return False
start, end = clipped_line
x0 = self.get_coord(start[0], self.canvas.min_x, self.canvas.x_step)
y0 = self.get_coord(start[1], self.canvas.min_y, self.canvas.y_step)
x1 = self.get_coord(end[0], self.canvas.min_x, self.canvas.x_step)
y1 = self.get_coord(end[1], self.canvas.min_y, self.canvas.y_step)
if (x0, y0) == (x1, y1):
return True
#x_zero_coord = self.get_coord(0, self.canvas.min_x, self.canvas.x_step)
y_zero_coord = self.get_coord(0, self.canvas.min_y, self.canvas.y_step, limits=[1, self.canvas.y_size])
if start[0] - end[0] == 0:
draw_symbol = u"|"
elif start[1] - end[1] == 0:
draw_symbol = '-'
else:
slope = (1.0 / self.canvas.ratio) * (end[1] - start[1]) / (end[0] - start[0])
draw_symbol = self._get_symbol_by_slope(slope, data.marker)
dx = x1 - x0
dy = y1 - y0
if abs(dx) > abs(dy):
s = _sign(dx)
slope = float(dy) / dx
for i in range(0, abs(int(dx))):
cur_draw_symbol = draw_symbol
x = i * s
cur_y = int(y0 + slope * x)
if (self.draw_axes) and (cur_y == y_zero_coord) and (draw_symbol == self.x_axis_symbol):
cur_draw_symbol = "-"
self.output_buffer[x0 + x][cur_y] = cur_draw_symbol
else:
s = _sign(dy)
slope = float(dx) / dy
for i in range(0, abs(int(dy))):
y = i * s
cur_draw_symbol = draw_symbol
cur_y = y0 + y
if (self.draw_axes) and (cur_y == y_zero_coord) and (draw_symbol == self.x_axis_symbol):
cur_draw_symbol = "-"
self.output_buffer[int(x0 + slope * y)][cur_y] = cur_draw_symbol
return False
def _plot_data_with_slope(self, data: AData) -> None:
xy = list(zip(data.x, data.y))
#sort according to the x coord
xy.sort(key=lambda c: c[0])
prev_p = xy[0]
e_xy = enumerate(xy)
next(e_xy)
for i, (xi, yi) in e_xy:
line = self._plot_line(prev_p, (xi, yi), data)
prev_p = (xi, yi)
# if no line, then symbol
if not line & self.canvas.coords_inside_data(xi, yi):
draw_symbol = data.marker
px, py = xy[i - 1]
nx, ny = xy[i]
if abs(nx - px) > 0.000001:
slope = (1.0 / self.canvas.ratio) * (ny - py) / (nx - px)
draw_symbol = self._get_symbol_by_slope(slope, draw_symbol)
x_coord = self.get_coord(xi, self.canvas.min_x, self.canvas.x_step)
y_coord = self.get_coord(yi, self.canvas.min_y, self.canvas.y_step)
if self.canvas.coords_inside_buffer(x_coord, y_coord):
y0_coord = self.get_coord(0, self.canvas.min_y, self.canvas.y_step)
if self.draw_axes:
if (y_coord == y0_coord) and (draw_symbol == u"\u23bc"):
draw_symbol = "="
self.output_buffer[x_coord][y_coord] = draw_symbol
def _plot_data(self, data: AData) -> None:
if data.plot_slope:
self._plot_data_with_slope(data)
else:
for x, y in zip(data.x, data.y):
if self.canvas.coords_inside_data(x, y):
x_coord = self.get_coord(x, self.canvas.min_x, self.canvas.x_step)
y_coord = self.get_coord(y, self.canvas.min_y, self.canvas.y_step)
if self.canvas.coords_inside_buffer(x_coord, y_coord):
self.output_buffer[x_coord][y_coord] = data.marker
def auto_limits(self):
if self.canvas.auto_adjust is True:
min_x = 0.
max_x = 0.
min_y = 0.
max_y = 0.
for dk in self.data:
ek = dk.extent()
min_x = min(min_x, min(ek[:2]))
min_y = min(min_y, min(ek[2:]))
max_x = max(max_x, max(ek[:2]))
max_y = max(max_y, max(ek[2:]))
self.canvas.xlim(min_x, max_x)
self.canvas.ylim(min_y, max_y)
def append_data(self, data: AData) -> None:
self.data.append(data)
self.auto_limits()
def plot(self,
x_seq: Sequence,
y_seq: Sequence = None,
marker: str = None,
plot_slope: bool = False,
xlim: Sequence[Number] = None,
ylim: Sequence[Number] = None) -> str:
if y_seq is None:
y_seq = x_seq[:]
x_seq = range(len(y_seq))
data = AData(x_seq, y_seq, marker=marker, plot_slope=plot_slope)
self.append_data(data)
if xlim is not None:
self.canvas.xlim(xlim)
if ylim is not None:
self.canvas.ylim(ylim)
return self.draw()
def draw(self) -> str:
self.output_buffer = [[" "] * self.canvas.y_size for i in range(self.canvas.x_size)]
if self.draw_axes:
self._draw_axes()
for dk in self.data:
self._plot_data(dk)
if self.plot_labels:
self._plot_labels()
trans_result = _transpose(_y_reverse(self.output_buffer))
result = self.new_line.join(["".join(row) for row in trans_result])
return result
def plot(x,
y=None,
marker=None,
shape=(50, 20),
draw_axes=True,
newline='\n',
plot_slope=False,
x_margin=0.05,
y_margin=0.1,
plot_labels=True,
xlim=None,
ylim=None):
flags = {'shape': shape,
'draw_axes': draw_axes,
'newline': newline,
'marker': marker,
'plot_slope': plot_slope,
'margins': (x_margin, y_margin),
'plot_labels': plot_labels }
p = AFigure(**flags)
print(p.plot(x, y, marker=marker, plot_slope=plot_slope))
def steppify(x, y):
""" Steppify a curve (x,y). Useful for manually filling histograms """
dx = 0.5 * (x[1:] + x[:-1])
xx = np.zeros( 2 * len(dx), dtype=float)
yy = np.zeros( 2 * len(y), dtype=float)
xx[0::2], xx[1::2] = dx, dx
yy[0::2], yy[1::2] = y, y
xx = np.concatenate(([x[0] - (dx[0] - x[0])], xx, [x[-1] + (x[-1] - dx[-1])]))
return xx, yy
def stemify(x, y):
""" Steppify a curve (x,y). Useful for manually filling histograms """
xx = np.zeros( 3 * len(x), dtype=float)
yy = np.zeros( 3 * len(y), dtype=float)
xx[0::3], xx[1::3], xx[2::3] = x, x, x
yy[1::3] = y
return xx, yy
def hist(x, bins=10, normed=False, weights=None, density=None, histtype='stem',
shape=(50, 20), draw_axes=True, newline='\n',
marker='_.', plot_slope=False, x_margin=0.05,
y_margin=0.1, plot_labels=True, xlim=None, ylim=None ):
from numpy import histogram
if histtype not in ['None', 'stem', 'step']:
raise ValueError('histtype must be in [None, stem, step]')
n, b = histogram(x, bins=bins, range=xlim, normed=normed, weights=weights, density=density)
_x = 0.5 * ( b[:-1] + b[1:] )
if histtype == 'step':
step(_x, n.astype(float))
elif histtype == 'stem':
stem(_x, n.astype(float))
else:
_y = n.astype(float)
plot(_x, _y, shape=shape, draw_axes=draw_axes, newline=newline, marker=marker,
plot_slope=plot_slope, x_margin=x_margin, y_margin=y_margin,
plot_labels=plot_labels, xlim=xlim, ylim=ylim)
def step(x, y, shape=(50, 20), draw_axes=True,
newline='\n', marker='_.', plot_slope=True, x_margin=0.05,
y_margin=0.1, plot_labels=True, xlim=None, ylim=None ):
_x, _y = steppify(x, y)
plot(_x, _y, shape=shape, draw_axes=draw_axes, newline=newline, marker=marker,
plot_slope=plot_slope, x_margin=x_margin, y_margin=y_margin,
plot_labels=plot_labels, xlim=xlim, ylim=ylim)
def stem(x, y, shape=(50, 20), draw_axes=True,
newline='\n', marker='_.', plot_slope=True, x_margin=0.05,
y_margin=0.1, plot_labels=True, xlim=None, ylim=None ):
_x, _y = stemify(x, y)
plot(_x, _y, shape=shape, draw_axes=draw_axes, newline=newline, marker=marker,
plot_slope=plot_slope, x_margin=x_margin, y_margin=y_margin,
plot_labels=plot_labels, xlim=xlim, ylim=ylim)
def hist2d(x, y, bins=[50, 20], range=None, normed=False, weights=None, ncolors=16,
width=50, percentiles=None):
im, ex, ey = np.histogram2d(x, y, bins, range=None, normed=normed, weights=weights)
if percentiles is None:
imshow(im, extent=[min(ex), max(ex), min(ey), max(ey)],
ncolors=ncolors, width=width)
else:
percentile_imshow(im, levels=percentiles, extent=None,
width=width, ncolors=width)
def percentile_imshow(im, levels=[68, 95, 99], extent=None, width=50, ncolors=16):
_im = im.astype(float)
_im -= im.min()
_im /= _im.max()
n = len(levels)
for e, lk in enumerate(sorted(levels)):
_im[ _im <= 0.01 * float(lk) ] = n - e
imshow(1. - _im, extent=None, width=width, ncolors=ncolors)
def imshow(im, extent=None, width=50, ncolors=16):
from scipy import ndimage
width0 = im.shape[0]
_im = ndimage.zoom(im.astype(float), float(width) / float(width0) )
_im -= im.min()
_im /= _im.max()
width, height = _im.shape[:2]
if len(im.shape) > 2:
_clr = True
else:
_clr = False
if ncolors == 16:
color = "MNHQ$OC?7>!:-;. "[::-1]
else:
color = '''$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,"^`'. '''[::-1]
ncolors = len(color)
string = ""
if not _clr:
for h in range(height): # first go through the height, otherwise will roate
for w in range(width):
string += color[int(_im[w, h] * (ncolors - 1) )]
string += "\n"
else:
for h in range(height): # first go through the height, otherwise will roate
for w in range(width):
string += color[int(sum(_im[w, h]) * (ncolors - 1) )]
string += "\n"
print(string)