-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathultrasound_detect.py
55 lines (42 loc) · 2.26 KB
/
ultrasound_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from flask import Flask, jsonify, request, make_response
from flask_restful import Api, Resource
from threading import Thread
import json
from queue import Queue
from image_processing import Image_Processing
from report_generation import ReportGeneration
class Ultrasound(Resource):
def post(self):
email = request.args.get("email")
full_name = request.args.get("full_name")
date_of_birth = request.args.get("date_of_birth")
if email is None:
return make_response(jsonify({'error': 'email is required as a query parameter'}), 400)
elif full_name is None:
return make_response(jsonify({'error': 'full_name is required as a query parameter'}), 400)
elif date_of_birth is None:
return make_response(jsonify({'error': 'date_of_birth is required as a query parameter'}), 400)
if 'image' in request.files:
image = request.files['image'].read()
# Create a queue to communicate the results from the worker thread
queue = Queue()
# Start a new thread to do some heavy processing
thread = Thread(target=self.ultrasound_detect, args=(image,full_name,date_of_birth,email, queue))
thread.start()
thread.join()
# Wait for the worker thread to finish and get the results
predictions = queue.get()
# Return the response
json_results = json.dumps(predictions)
return make_response(json_results, 200)
else:
return make_response(jsonify({'status': 'Bad Request'}), 400)
def ultrasound_detect(self, image,full_name,date_of_birth,email,queue):
report_type, lesion, risk_factor, message, sub_text = Image_Processing().ultrasound_detect(image)
# print(report_type, lesion, risk_factor, message, sub_text)
processed_image_grid = Image_Processing().image_processing_grid(image,"Ultrasound")
pdf_file_name, data = ReportGeneration().generate_report(full_name, date_of_birth, email, lesion, risk_factor, processed_image_grid, message, sub_text, report_type)
print(data)
response = ReportGeneration().push_to_firebase(pdf_file_name, data)
# Put the results in the queue
queue.put(response)