-
Notifications
You must be signed in to change notification settings - Fork 65
/
util.py
179 lines (146 loc) · 5.44 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import io
import cv2
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17],
[1, 16], [16, 18], [3, 17], [6, 18]]
# the middle joints heatmap correpondence
hmapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22],
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52],
[55, 56], [37, 38], [45, 46]]
# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
[0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
[85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
def plot_to_image(figure):
"""Converts the matplotlib plot specified by 'figure' to a PNG image and
returns it. The supplied figure is closed and inaccessible after this call."""
# Save the plot to a PNG in memory.
buf = io.BytesIO()
plt.savefig(buf, format='png')
# Closing the figure prevents it from being displayed directly inside
# the notebook.
plt.close(figure)
buf.seek(0)
# Convert PNG buffer to TF image
image = tf.image.decode_png(buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
return image
def get_jet_color(v, vmin, vmax):
c = np.zeros(3)
if v < vmin:
v = vmin
if v > vmax:
v = vmax
dv = vmax - vmin
if v < (vmin + 0.125 * dv):
c[0] = 256 * (0.5 + (v * 4)) # B: 0.5 ~ 1
elif v < (vmin + 0.375 * dv):
c[0] = 255
c[1] = 256 * (v - 0.125) * 4 # G: 0 ~ 1
elif v < (vmin + 0.625 * dv):
c[0] = 256 * (-4 * v + 2.5) # B: 1 ~ 0
c[1] = 255
c[2] = 256 * (4 * (v - 0.375)) # R: 0 ~ 1
elif v < (vmin + 0.875 * dv):
c[1] = 256 * (-4 * v + 3.5) # G: 1 ~ 0
c[2] = 255
else:
c[2] = 256 * (-4 * v + 4.5) # R: 1 ~ 0.5
return c
def colorize(gray_img):
out = np.zeros(gray_img.shape + (3,))
for y in range(out.shape[0]):
for x in range(out.shape[1]):
out[y, x, :] = get_jet_color(gray_img[y, x], 0, 1)
return out
def pad_right_down_corner(img, stride, pad_value):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + pad_value, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + pad_value, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + pad_value, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + pad_value, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
def probe_model_singlenet(model, test_img_path):
img = cv2.imread(test_img_path) # B,G,R order
input_img = img[np.newaxis, :, :, [2, 1, 0]]
inputs = tf.convert_to_tensor(input_img)
output_blobs = model.predict(inputs)
paf1 = output_blobs[0]
paf2 = output_blobs[1]
paf3 = output_blobs[2]
heatmap1 = output_blobs[3]
figure = plt.figure(figsize=(10, 10))
plt.subplot(2, 2, 1, title='stage 1 - paf')
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(paf1[0, :, :, 0], cmap='gray')
plt.subplot(2, 2, 2, title='stage 2 - paf')
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(paf2[0, :, :, 0], cmap='gray')
plt.subplot(2, 2, 3, title='stage 3 - paf')
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(paf3[0, :, :, 0], cmap='gray')
plt.subplot(2, 2, 4, title='stage 4 - heatmaps')
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(heatmap1[0, :, :, 0], cmap='gray')
return figure
def probe_model_2br_vgg(model, test_img_path):
img = cv2.imread(test_img_path) # B,G,R order
input_img = img[np.newaxis, :, :, [2, 1, 0]]
inputs = tf.convert_to_tensor(input_img)
output_blobs = model.predict([
inputs,
tf.ones((1, 46, 46, 38), dtype=tf.dtypes.float32),
tf.ones((1, 46, 46, 19), dtype=tf.dtypes.float32)
])
paf1 = output_blobs[10]
paf2 = output_blobs[8]
heatmap1 = output_blobs[11]
heatmap2 = output_blobs[9]
figure = plt.figure(figsize=(10, 10))
plt.subplot(2, 2, 1, title='stage 6 - paf')
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(paf1[0, :, :, 0], cmap='gray')
plt.subplot(2, 2, 2, title='stage 5 - paf')
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(paf2[0, :, :, 0], cmap='gray')
plt.subplot(2, 2, 3, title='stage 6 - heatmap')
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(heatmap1[0, :, :, 0], cmap='gray')
plt.subplot(2, 2, 4, title='stage 5 - heatmap')
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(heatmap2[0, :, :, 0], cmap='gray')
return figure