Skip to content

Latest commit

 

History

History
459 lines (338 loc) · 12.1 KB

README.md

File metadata and controls

459 lines (338 loc) · 12.1 KB

test codecov Python 3.8 Python 2.7

pprofiler

pprofiler ("Pretty profiler" or "Python code level profiler" or "Pure Python profiler") is a Python level profiler like timeit (against C code level profilers like cProfile).

Key features

  • Can be used like
    • context manager
    • decorator
  • Provides
    • total time
    • mean avarage
    • standard deviation
    • min/max
  • Nested scopes
  • Flexible reporting formats
    • simplest printing to stdout
    • ouput using logging or other engine
    • data as nested structure to store into some document-oriented database like MongoDB
    • data as flat structure to store into some relational database like PostgreSQL
  • Easy usage/integration

Quick overview

You can found all examples in /examples dir.

To use pprofiler you need to import only one symbol. You can drop pprofiler.py into you source tree and use it without installation pprofiler package.

Using as context manager

#!/usr/bin/python
# coding: U8


import time
import random

from pprofiler import profiler


def rand_sleep(dt):
    time.sleep(dt * (1 + 0.4 * (random.random() - 0.5)))  # dt ± 20%


def main():
    with profiler('prepare input'):
        rand_sleep(.1)
    for n in range(3):
        with profiler('process chunk'):
            rand_sleep(.2)
    with profiler('push result'):
        rand_sleep(.1)
    profiler.print_report()


if __name__ == '__main__':
    main()

Output:

name             perc   sum  n   avg   max   min   dev
---------------- ---- ----- -- ----- ----- ----- -----
process chunk ..  73%  0.58  3  0.19  0.22  0.18  0.02
push result ....  14%  0.11  1  0.11  0.11  0.11     -
prepare input ..  13%  0.10  1  0.10  0.10  0.10     -

Using as decorator:

#!/usr/bin/python
# coding: U8


import time
import random

from pprofiler import profiler


def rand_sleep(dt):
    time.sleep(dt * (1 + 0.4 * (random.random() - 0.5)))  # dt ± 20%


@profiler('prepare input')
def prepare_input():
    rand_sleep(.1)


@profiler('process chunk')
def process_chunk():
    rand_sleep(.2)


@profiler('push result')
def push_result():
    rand_sleep(.1)


def main():
    prepare_input()
    for n in range(3):
        process_chunk()
    push_result()
    profiler.print_report()


if __name__ == '__main__':
    main()

Output:

name             perc   sum  n   avg   max   min   dev
---------------- ---- ----- -- ----- ----- ----- -----
process chunk ..  74%  0.64  3  0.21  0.23  0.19  0.03
prepare input ..  14%  0.12  1  0.12  0.12  0.12     -
push result ....  13%  0.11  1  0.11  0.11  0.11     -

Report formats

You can get reports in different ways and formats. Look at this simplest example:

#!/usr/bin/python
# coding: U8


import time
import random
import pprint
import sys
import logging

from pprofiler import profiler


logger = logging.getLogger(__name__)


def rand_sleep(dt):
    time.sleep(dt * (1 + 0.4 * (random.random() - 0.5)))  # dt ± 20%


@profiler('demo')
def demo():
    rand_sleep(.2)


def main():
    logging.basicConfig(
        format='%(asctime)s [%(levelname)s] [%(process)d] %(message)s',
        datefmt='%H:%M:%S',
        level=logging.DEBUG,
        handlers=[logging.StreamHandler(sys.stdout)])

    demo()
    demo()
    profiler.print_report()  # print to stdout
    profiler.print_report(logger.info)  # print using custom logger
    pprint.pprint(profiler.report)  # get report as structure
    pprint.pprint(list(profiler))  # get report as lines


if __name__ == '__main__':
    main()

You can just print formated report to stdout using profiler.print_report():

name     perc   sum  n   avg   max   min   dev
------- ----- ----- -- ----- ----- ----- -----
demo ..  100%  0.37  2  0.19  0.21  0.16  0.03

You can use you custom logger like this profiler.print_report(logger.info):

13:06:22 [INFO] [27038] name     perc   sum  n   avg   max   min   dev
13:06:22 [INFO] [27038] ------- ----- ----- -- ----- ----- ----- -----
13:06:22 [INFO] [27038] demo ..  100%  0.37  2  0.19  0.21  0.16  0.03

You can get report as nested structure (profiler.report) to store it into some document-orienteted storage like MongoDB:

[{'avg': 0.1868218183517456,
  'dev': 0.03486269297645324,
  'max': 0.2114734649658203,
  'min': 0.1621701717376709,
  'name': 'demo',
  'num': 2,
  'percent': 100.0,
  'sum': 0.3736436367034912}]

And you can get the report as flat list of items to store report line by line to some relational databases, using profiler as iterator:

[{'avg': 0.18060684204101562,
  'dev': 0.0004245030582017247,
  'level': 0,
  'max': 0.1809070110321045,
  'min': 0.18030667304992676,
  'name': 'demo',
  'num': 2,
  'percent': 100.0,
  'sum': 0.36121368408203125}]

You can find more complex exmaples in 'examples/' directory.

Nested scopes

Nested scopes helps you to study your timings deeper. Look at this:

#!/usr/bin/python
# coding: U8


import time
import random

from pprofiler import profiler


def rand_sleep(dt):
    time.sleep(dt * (1 + 0.4 * (random.random() - 0.5)))  # dt ± 20%


def main():
    with profiler('cook document'):
        rand_sleep(.1)  # we do not want to give the individual attention to this
        with profiler('create title'):
            rand_sleep(.2)
        with profiler('create body'):
            rand_sleep(.3)
    with profiler('push document'):
        rand_sleep(.5)
    profiler.print_report()


if __name__ == '__main__':
    main()

Here we have two high level tasks: (i) 'cook document' and (ii) 'push document'. But we want to pay attention to some subtasks in 'cook document': 'create title' and 'create body'.

We can get report like this:

name              perc   sum  n   avg   max   min dev
----------------- ---- ----- -- ----- ----- ----- ---
cook document ...  52%  0.63  1  0.63  0.63  0.63   -
. create body ...  65%  0.34  1  0.34  0.34  0.34   -
. create title ..  35%  0.18  1  0.18  0.18  0.18   -
push document ...  48%  0.59  1  0.59  0.59  0.59   -

You can read it level by level. This is high level tasks:

...
cook document ...  52%  0.63  1  0.63  0.63  0.63   -
...
push document ...  48%  0.59  1  0.59  0.59  0.59   -

You can see, that cooking takes 52% of time, and pushing takes 48%. But you can look deeper inside of cooking:

...
. create body ...  65%  0.34  1  0.34  0.34  0.34   -
. create title ..  35%  0.18  1  0.18  0.18  0.18   -
...

Here you can analyze parts of 'cook document' task.

Multithreading/multiprocessing

pprofiler is not designed for concurrent computing. But it is possible to use it in multithreading/multiprocessing applications. The simplest way is to build autonomous instance of pprofiler in each worker:

#!/usr/bin/python
# coding: U8


import time
import random
import multiprocessing
import sys
import logging

from pprofiler import profiler


logger = logging.getLogger()


def rand_sleep(dt):
    time.sleep(dt * (1 + 0.4 * (random.random() - 0.5)))  # dt ± 20%


def subprocess_worker(x):
    local_profiler = type(profiler)()  # create and use local profiler in each child process
    logger.debug('Worker %d start', x)
    with local_profiler('worker_%d' % x):
        rand_sleep(3)
    logger.debug('Worker %d done', x)
    local_profiler.print_report(logger.info)


def main():
    logging.basicConfig(
        format='%(asctime)s,%(msecs)03d [%(process)d] [%(levelname)s] %(message)s',
        datefmt='%H:%M:%S',
        level=logging.DEBUG,
        handlers=[logging.StreamHandler(sys.stdout)])
    logger.debug('Master start')
    with profiler('master (total)'):
        pool = multiprocessing.Pool(processes=2)
        for i in pool.imap_unordered(subprocess_worker, range(2)):
            pass
    logger.debug('Master done')
    profiler.print_report(logger.info)


if __name__ == '__main__':
    main()

You can get something like this:

22:53:11,092 [1216] [DEBUG] Master start
22:53:11,236 [1217] [DEBUG] Worker 0 start
22:53:11,237 [1218] [DEBUG] Worker 1 start
22:53:14,189 [1218] [DEBUG] Worker 1 done
22:53:14,190 [1218] [INFO] name         perc   sum  n   avg   max   min dev
22:53:14,190 [1218] [INFO] ----------- ----- ----- -- ----- ----- ----- ---
22:53:14,191 [1218] [INFO] worker_1 ..  100%  2.95  1  2.95  2.95  2.95   -
22:53:14,402 [1217] [DEBUG] Worker 0 done
22:53:14,403 [1217] [INFO] name         perc   sum  n   avg   max   min dev
22:53:14,403 [1217] [INFO] ----------- ----- ----- -- ----- ----- ----- ---
22:53:14,404 [1217] [INFO] worker_0 ..  100%  3.16  1  3.16  3.16  3.16   -
22:53:14,405 [1216] [DEBUG] Master done
22:53:14,406 [1216] [INFO] name               perc   sum  n   avg   max   min dev
22:53:14,406 [1216] [INFO] ----------------- ----- ----- -- ----- ----- ----- ---
22:53:14,407 [1216] [INFO] master (total) ..  100%  3.31  1  3.31  3.31  3.31   -

You can see three processes: one master (PID=1216) and two workers (PID=1217 and 1218). Each of them uses a separate instance of pprofiler and gets its own report.

This is not the only solution. You can collect all reports in one process/thread and store all results or prepare you custom report:

#!/usr/bin/python
# coding: U8


import time
import random
import multiprocessing
import sys
import logging
import itertools

from pprofiler import profiler


logger = logging.getLogger()


def rand_sleep(dt):
    time.sleep(dt * (1 + 0.4 * (random.random() - 0.5)))  # dt ± 20%


def subprocess_worker(x):
    local_profiler = type(profiler)()  # create and use local profiler in each child process
    logger.debug('Worker %d start', x)
    with local_profiler('worker_%d' % x):
        rand_sleep(3)
    logger.debug('Worker %d done', x)
    return local_profiler


def main():
    logging.basicConfig(
        format='%(asctime)s,%(msecs)03d [%(process)d] [%(levelname)s] %(message)s',
        datefmt='%H:%M:%S',
        level=logging.DEBUG,
        handlers=[logging.StreamHandler(sys.stdout)])
    logger.debug('Master start')
    with profiler('master (total)'):
        pool = multiprocessing.Pool(processes=2)
        workers_reports = list(pool.imap_unordered(subprocess_worker, range(2)))
    logger.debug('Master done')
    logger.info('== Native reports:')
    profiler.print_report(logger.info)
    for r in workers_reports:
        r.print_report(logger.info)
    logger.info('== Simple custom report:')
    for r in itertools.chain.from_iterable(x.report for x in [profiler] + workers_reports):
        logger.info('{name:.<20s} {sum:.3f} seconds'.format(**r))


if __name__ == '__main__':
    main()

Result:

10:24:48,085 [1353] [DEBUG] Master start
10:24:48,136 [1355] [DEBUG] Worker 1 start
10:24:48,136 [1354] [DEBUG] Worker 0 start
10:24:51,391 [1355] [DEBUG] Worker 1 done
10:24:51,705 [1354] [DEBUG] Worker 0 done
10:24:51,707 [1353] [DEBUG] Master done
10:24:51,708 [1353] [INFO] == Native reports:
10:24:51,708 [1353] [INFO] name               perc   sum  n   avg   max   min dev
10:24:51,709 [1353] [INFO] ----------------- ----- ----- -- ----- ----- ----- ---
10:24:51,709 [1353] [INFO] master (total) ..  100%  3.62  1  3.62  3.62  3.62   -
10:24:51,710 [1353] [INFO] name         perc   sum  n   avg   max   min dev
10:24:51,710 [1353] [INFO] ----------- ----- ----- -- ----- ----- ----- ---
10:24:51,710 [1353] [INFO] worker_1 ..  100%  3.25  1  3.25  3.25  3.25   -
10:24:51,711 [1353] [INFO] name         perc   sum  n   avg   max   min dev
10:24:51,711 [1353] [INFO] ----------- ----- ----- -- ----- ----- ----- ---
10:24:51,711 [1353] [INFO] worker_0 ..  100%  3.57  1  3.57  3.57  3.57   -
10:24:51,712 [1353] [INFO] == Simple custom report:
10:24:51,712 [1353] [INFO] master (total)...... 3.621 seconds
10:24:51,712 [1353] [INFO] worker_1............ 3.253 seconds
10:24:51,713 [1353] [INFO] worker_0............ 3.567 seconds