-
Notifications
You must be signed in to change notification settings - Fork 0
/
sellar_ecoinvent.py
205 lines (151 loc) · 6.19 KB
/
sellar_ecoinvent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import brightway2 as bw
import openmdao.api as om
import numpy as np
from lca4mdao.component import LcaCalculationComponent
from lca4mdao.utilities import cleanup_parameters, setup_ecoinvent, setup_bw
from lca4mdao.variable import ExplicitComponentLCA
# File path for ecoinvent datasets
fp = '/home/dmsm/t.bellier/Documents/Code/BE_LCA/datasets_old'
wood = ('ecoinvent 3.8 cutoff', 'a63dd664a99c9e82c192f8c50a9b4cfb')
steel = ('ecoinvent 3.8 cutoff', '580b7aea44c188e5958b4c6bd6ec515a')
method_key = ('ReCiPe Midpoint (H) V1.13', 'climate change', 'GWP100')
def build_data():
sellar = bw.Database('sellar')
sellar.register()
sellar.delete(warn=False)
sellar.new_activity('sellar_problem', name='sellar problem').save()
class SellarDis1(ExplicitComponentLCA):
"""
Component containing Discipline 1 -- no derivatives version.
"""
def setup(self):
# Global Design Variable
self.add_input('z', val=np.zeros(2))
# Local Design Variable
self.add_input('x', val=0.)
# Coupling parameter
self.add_input('y2', val=1.0)
# Coupling output
self.add_output('y1', lca_parent=("sellar", "sellar_problem"), lca_units='kilogram', lca_key=wood, val=1.0)
def setup_partials(self):
# Finite difference all partials.
self.declare_partials('*', '*', method='fd')
def compute(self, inputs, outputs):
"""
Evaluates the equation
y1 = z1**2 + z2 + x1 - 0.2*y2
"""
z1 = inputs['z'][0]
z2 = inputs['z'][1]
x1 = inputs['x']
y2 = inputs['y2']
outputs['y1'] = z1 ** 2 + z2 + x1 - 0.2 * y2
class SellarDis2(ExplicitComponentLCA):
"""
Component containing Discipline 2 -- no derivatives version.
"""
def setup(self):
# Global Design Variable
self.add_input('z', val=np.zeros(2))
# Coupling parameter
self.add_input('y1', val=1.0)
# Coupling output
self.add_output('y2', lca_parent=("sellar", "sellar_problem"), lca_units='kilogram', lca_key=steel, val=1.0)
def setup_partials(self):
# Finite difference all partials.
self.declare_partials('*', '*', method='fd')
def compute(self, inputs, outputs):
"""
Evaluates the equation
y2 = y1**(.5) + z1 + z2
"""
z1 = inputs['z'][0]
z2 = inputs['z'][1]
y1 = inputs['y1']
# Note: this may cause some issues. However, y1 is constrained to be
# above 3.16, so lets just let it converge, and the optimizer will
# throw it out
if y1.real < 0.0:
y1 *= -1
outputs['y2'] = y1 ** .5 + z1 + z2
class SellarLCA(LcaCalculationComponent):
def setup(self):
self.add_lca_output('GWP', {("sellar", "sellar_problem"): 1},
method_key=('ReCiPe Midpoint (H) V1.13', 'climate change', 'GWP100'))
class SellarMDA(om.Group):
"""
Group containing the Sellar MDA.
"""
def setup(self):
cycle = self.add_subsystem('cycle', om.Group(), promotes=['*'])
cycle.add_subsystem('d1', SellarDis1(), promotes_inputs=['x', 'z', 'y2'],
promotes_outputs=['y1'])
cycle.add_subsystem('d2', SellarDis2(), promotes_inputs=['z', 'y1'],
promotes_outputs=['y2'])
cycle.set_input_defaults('x', 1.0)
cycle.set_input_defaults('z', np.array([5.0, 2.0]))
# Nonlinear Block Gauss Seidel is a gradient free solver
cycle.nonlinear_solver = om.NonlinearBlockGS(maxiter=100)
self.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
z=np.array([0.0, 0.0]), x=0.0),
promotes=['x', 'z', 'y1', 'y2', 'obj'])
self.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1'])
self.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2'])
self.add_subsystem('LCA', SellarLCA(), promotes=['*'])
if __name__ == '__main__':
setup_bw("Example")
setup_ecoinvent(fp, "ecoinvent 3.8 cutoff")
build_data()
cleanup_parameters()
prob = om.Problem()
prob.model = SellarMDA()
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'COBYLA'
prob.driver.options['maxiter'] = 200
prob.driver.options['tol'] = 1e-8
prob.model.add_design_var('x', lower=0, upper=10)
prob.model.add_design_var('z', lower=0, upper=10)
prob.model.add_objective('obj')
prob.model.add_constraint('con1', upper=0)
prob.model.add_constraint('con2', upper=0)
# Ask OpenMDAO to finite-difference across the model to compute the gradients for the optimizer
prob.model.approx_totals()
prob.setup()
prob.set_solver_print(level=0)
prob.run_driver()
print('minimum found at')
print(prob.get_val('x')[0])
print(prob.get_val('z'))
print('Environmental parameters at minimum')
print('wood: ' + str(prob.get_val('y1')[0]))
print('steel: ' + str(prob.get_val('y2')[0]))
print('minumum objective')
print(prob.get_val('obj')[0])
print('GWP at objective')
print(prob.get_val('GWP')[0])
prob = om.Problem()
prob.model = SellarMDA()
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'COBYLA'
prob.driver.options['maxiter'] = 200
prob.driver.options['tol'] = 1e-8
prob.model.add_design_var('x', lower=0, upper=10)
prob.model.add_design_var('z', lower=0, upper=10)
prob.model.add_objective('GWP')
prob.model.add_constraint('con1', upper=0)
prob.model.add_constraint('con2', upper=0)
# Ask OpenMDAO to finite-difference across the model to compute the gradients for the optimizer
prob.model.approx_totals()
prob.setup()
prob.set_solver_print(level=0)
prob.run_driver()
print('minimum found at')
print(prob.get_val('x')[0])
print(prob.get_val('z'))
print('Environmental parameters at minimum')
print('wood: ' + str(prob.get_val('y1')[0]))
print('steel: ' + str(prob.get_val('y2')[0]))
print('minimum GWP')
print(prob.get_val('GWP')[0])
print('objective at minimum GWP')
print(prob.get_val('obj')[0])