Skip to content

Latest commit

 

History

History
79 lines (58 loc) · 2.58 KB

README.md

File metadata and controls

79 lines (58 loc) · 2.58 KB

Fully Spiking Denoising Diffusion Implicit Models

Official implementation of FSDDIM

arxiv: https://arxiv.org/abs/2312.01742

Initialization

  1. Install requirements

    pip install -r requirements.txt
  2. Login to Weights & Biases

    Please follow the official instruction of Weights & Biases for more details.

    wandb login
  3. Initialize fid stats

    python calc_clean_fid_stats.py -c <config_file> -d 0 -o <output_directory>
    • args
      • -c, --config
        • Path to the config file.
        • Sample config files can be found in configs/.
      • -d, --gpu-id
        • GPU id.
      • -o, --output-dir
        • Directory in which dataset images will be saved.

Training

We use Hugging Face Accelerate. Please follow the official instruction of Accelerate for more details.

accelerate launch --multi_gpu --num_processes=4 --gpu_ids=0,1,2,3 --mixed_precision fp16 main.py -c <config_file> -n <experiment_name>
  • args
    • -c, --config
      • Path to the config file.
      • Sample config files can be found in configs/.
    • -n, --name
      • Experiment name.
      • Please specify a unique name because generated images will be saved in output/<experiment_name>.

Evaluation metrics

The scores of evaluation metrics are approximately as follows.

Dataset Time steps Fréchet Inception Distance (FID) Fréchet Autoencoder Distance (FAD)
MNIST 8 3.99 5.71
MNIST 4 7.48 3.62
Fashion MNIST 8 11.78 4.91
Fashion MNIST 4 9.17 9.25
CIFAR-10 8 46.14 12.61
CIFAR-10 4 51.46 8.63
CelebA 4 36.08 66.52

Citation

Please cite our paper if you use this code in your own work:

@article{FSDDIM,
  title={Fully Spiking Denoising Diffusion Implicit Models},
  author={Watanabe, Ryo and Mukuta, Yusuke and Harada, Tatsuya},
  journal={arXiv preprint arXiv:2312.01742},
  year={2023}
}