forked from kamata1729/FullySpikingVAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_ann_vae.py
231 lines (184 loc) · 9.11 KB
/
main_ann_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import os.path
import numpy as np
import logging
import argparse
import pycuda.driver as cuda
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from utils import AverageMeter
from utils import aboutCudaDevices
from utils import CountMulAddANN
from datasets import load_dataset_ann
import ann_models.ann_vae as ann_vae
import metrics.inception_score as inception_score
import metrics.clean_fid as clean_fid
import metrics.autoencoder_fid as autoencoder_fid
max_accuracy = 0
min_loss = 1000
def add_hook(net):
count_mul_add = CountMulAddANN()
hook_handles = []
for m in net.modules():
if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear) or isinstance(m, torch.nn.ConvTranspose2d):
handle = m.register_forward_hook(count_mul_add)
hook_handles.append(handle)
return count_mul_add, hook_handles
def train(network, trainloader, opti, epoch):
loss_meter = AverageMeter()
recons_meter = AverageMeter()
kld_meter = AverageMeter()
network = network.train()
for batch_idx, (real_img, label) in enumerate(trainloader):
opti.zero_grad()
real_img = real_img.to(device)
recons, mu, log_var = network(real_img)
losses = network.loss_function(recons, real_img, mu, log_var, 1/len(trainloader))
losses['loss'].backward()
opti.step()
loss_meter.update(losses['loss'].detach().cpu().item())
recons_meter.update(losses['Reconstruction_Loss'].detach().cpu().item())
kld_meter.update(losses['KLD'].detach().cpu().item())
print(f'Train[{epoch}/{max_epoch}] [{batch_idx}/{len(trainloader)}] Loss: {loss_meter.avg}, RECONS: {recons_meter.avg}, KLD: {kld_meter.avg}')
if batch_idx == len(trainloader)-1:
os.makedirs(f'checkpoint/{args.name}/imgs/train/', exist_ok=True)
torchvision.utils.save_image((real_img+1)/2, f'checkpoint/{args.name}/imgs/train/epoch{epoch}_input.png')
torchvision.utils.save_image((recons+1)/2, f'checkpoint/{args.name}/imgs/train/epoch{epoch}_recons.png')
writer.add_images('Train/input_img', (real_img+1)/2, epoch)
writer.add_images('Train/recons_img', (recons+1)/2, epoch)
logging.info(f"Train [{epoch}] Loss: {loss_meter.avg} ReconsLoss: {recons_meter.avg} KLD: {kld_meter.avg}")
writer.add_scalar('Train/loss', loss_meter.avg, epoch)
writer.add_scalar('Train/recons_loss', recons_meter.avg, epoch)
writer.add_scalar('Train/kld', kld_meter.avg, epoch)
return loss_meter.avg
def test(network, testloader, epoch):
loss_meter = AverageMeter()
recons_meter = AverageMeter()
kld_meter = AverageMeter()
count_mul_add, hook_handles = add_hook(net)
network = network.eval()
with torch.no_grad():
for batch_idx, (real_img, label) in enumerate(testloader):
real_img = real_img.to(device)
recons, mu, log_var = network(real_img)
losses = network.loss_function(recons, real_img, mu, log_var, 1/len(testloader))
loss_meter.update(losses['loss'].detach().cpu().item())
recons_meter.update(losses['Reconstruction_Loss'].detach().cpu().item())
kld_meter.update(losses['KLD'].detach().cpu().item())
print(f'Test[{epoch}/{max_epoch}] [{batch_idx}/{len(testloader)}] Loss: {loss_meter.avg}, RECONS: {recons_meter.avg}, KLD: {kld_meter.avg}')
if batch_idx == len(testloader)-1:
os.makedirs(f'checkpoint/{args.name}/imgs/test/', exist_ok=True)
torchvision.utils.save_image((real_img+1)/2, f'checkpoint/{args.name}/imgs/test/epoch{epoch}_input.png')
torchvision.utils.save_image((recons+1)/2, f'checkpoint/{args.name}/imgs/test/epoch{epoch}_recons.png')
writer.add_images('Test/input_img', (real_img+1)/2, epoch)
writer.add_images('Test/recons_img', (recons+1)/2, epoch)
logging.info(f"Test [{epoch}] Loss: {loss_meter.avg} ReconsLoss: {recons_meter.avg} KLD: {kld_meter.avg}")
writer.add_scalar('Test/loss', loss_meter.avg, epoch)
writer.add_scalar('Test/recons_loss', recons_meter.avg, epoch)
writer.add_scalar('Test/kld', kld_meter.avg, epoch)
writer.add_scalar('Test/mul', count_mul_add.mul_sum / len(testloader), epoch)
writer.add_scalar('Test/add', count_mul_add.add_sum / len(testloader), epoch)
for handle in hook_handles:
handle.remove()
return loss_meter.avg
def sample(network, epoch, batch_size=128):
network = network.eval()
with torch.no_grad():
samples = network.sample(batch_size, device)
writer.add_images('Sample/sample_img', (samples+1)/2, epoch)
os.makedirs(f'checkpoint/{args.name}/imgs/sample/', exist_ok=True)
torchvision.utils.save_image((samples+1)/2, f'checkpoint/{args.name}/imgs/sample/epoch{epoch}_sample.png')
def calc_inception_score(network, epoch, batch_size=256):
network = network.eval()
with torch.no_grad():
inception_mean, inception_std = inception_score.get_inception_score_ann(network, device=device, batch_size=batch_size, batch_times=10)
writer.add_scalar('Sample/inception_score_mean', inception_mean, epoch)
writer.add_scalar('Sample/inception_score_std', inception_std, epoch)
def calc_clean_fid(network, epoch):
network = network.eval()
with torch.no_grad():
if args.dataset.lower() == 'mnist':
dataset_name = 'MNIST'
elif args.dataset.lower() == 'fashion':
dataset_name = 'FashionMNIST'
elif args.dataset.lower() == 'celeba':
dataset_name = 'celeba'
elif args.dataset.lower() == 'cifar10':
dataset_name = 'cifar10'
else:
raise ValueError()
fid_score = clean_fid.get_clean_fid_score_ann(network, dataset_name, device, 5000)
writer.add_scalar('Sample/FID', fid_score, epoch)
def calc_autoencoder_frechet_distance(network, epoch):
network = network.eval()
with torch.no_grad():
fid_score = autoencoder_fid.get_autoencoder_frechet_distance_ann(network, args.dataset.lower(), device, 5000)
writer.add_scalar('Sample/FAD', fid_score, epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('name', type=str)
parser.add_argument('-dataset', type=str, required=True)
parser.add_argument('-batch_size', type=int, default=250)
parser.add_argument('-latent_dim', type=int, default=128)
parser.add_argument('-checkpoint', action='store', dest='checkpoint', help='The path of checkpoint, if use checkpoint')
parser.add_argument('-device', type=int, default=0)
try:
args = parser.parse_args()
except:
parser.print_help()
exit(0)
if args.device is None:
device = torch.device("cuda:0")
else:
device = torch.device(f"cuda:{args.device}")
data_path = "./data"
if args.dataset.lower() == 'mnist':
train_loader, test_loader = load_dataset_ann.load_mnist(data_path, args.batch_size)
in_channels = 1
net = ann_vae.VanillaVAE(in_channels, args.latent_dim)
elif args.dataset.lower() == 'fashion':
train_loader, test_loader = load_dataset_ann.load_fashionmnist(data_path, args.batch_size)
in_channels = 1
net = ann_vae.VanillaVAE(in_channels, args.latent_dim)
elif args.dataset.lower() == 'celeba':
train_loader, test_loader = load_dataset_ann.load_celeba(data_path, args.batch_size)
in_channels = 3
net = ann_vae.VanillaVAELarge(in_channels, args.latent_dim)
elif args.dataset.lower() == 'cifar10':
train_loader, test_loader = load_dataset_ann.load_cifar10(data_path, args.batch_size)
in_channels = 3
net = ann_vae.VanillaVAE(in_channels, args.latent_dim)
else:
raise ValueError("invalid dataset")
net = net.to(device)
os.makedirs(f'checkpoint/{args.name}', exist_ok=True)
writer = SummaryWriter(log_dir=f'checkpoint/{args.name}/tb')
logging.basicConfig(filename=f'checkpoint/{args.name}/{args.name}.log', level=logging.INFO)
logging.info(args)
if torch.cuda.is_available():
cuda.init()
c_device = aboutCudaDevices()
print(c_device.info())
print("selected device: ", args.device)
else:
raise Exception("only support gpu")
if args.checkpoint is not None:
checkpoint_path = args.checkpoint
checkpoint = torch.load(checkpoint_path)
net.load_state_dict(checkpoint)
optimizer = torch.optim.AdamW(net.parameters(), lr=0.001, betas=(0.9, 0.999))
best_loss = 1e8
max_epoch = 150
for e in range(max_epoch):
train_loss = train(net, train_loader, optimizer, e)
test_loss = test(net, test_loader, e)
torch.save(net.state_dict(), f'checkpoint/{args.name}/checkpoint.pth')
if test_loss < best_loss:
best_loss = test_loss
torch.save(net.state_dict(), f'checkpoint/{args.name}/best.pth')
sample(net, e, batch_size=128)
calc_inception_score(net, e)
calc_autoencoder_frechet_distance(net, e)
calc_clean_fid(net, e)
writer.close()