-
Notifications
You must be signed in to change notification settings - Fork 4
/
objects_and_functions.py
342 lines (307 loc) · 12.3 KB
/
objects_and_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# coding=utf-8
from __future__ import print_function
import codecs
import os
import spacy
from os import listdir
# noinspection PyUnresolvedReferences
from os.path import isfile
from google.cloud import language
from google.cloud.language import enums
from google.cloud.language import types
ANNOT_SOURCE_DIR = u"data/GeoWebNews/"
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "path to your credentials file"
def get_coordinates(con, loc_name): # Copied from our previous work, see Map Vector repository, thanks!
"""
Access the database to retrieve coordinates and other data from DB.
:param con: sqlite3 database cursor i.e. DB connection
:param loc_name: name of the place
:return: a list of tuples [(latitude, longitude, population, feature_code), ...]
"""
result = con.execute(u"SELECT METADATA FROM GEO WHERE NAME = ?", (loc_name.lower(),)).fetchone()
if result:
result = eval(result[0]) # Do not remove the sorting, the function below assumes sorted results!
return sorted(result, key=lambda (a, b, c, d): c, reverse=True)
else:
return []
class Annotation:
"""
A simple, small container for annotations for convenience.
"""
def __init__(self, key):
self.key = key
key = None
toponym_type = None
start = None
end = None
text = None
modifier_type = None
non_locational = False
geonames_id = None
def text_to_ann(directory=ANNOT_SOURCE_DIR):
"""
Given a directory, read all annotation files and return for further processing.
:return: a dictionary of annotations indexed by file names
"""
annotations = {}
files = [f for f in listdir(directory) if isfile(directory + f)]
for f in files:
if f.endswith(".txt") or f.startswith("."):
continue
ann = {}
annotations[str(f.replace(".ann", ""))] = ann
f = codecs.open(directory + f, encoding="utf-8")
for line in f:
line = line.strip().split("\t")
if line[0].startswith("T"): # token
if line[0] in ann:
raise Exception("Duplicate! Check.")
else:
ann[line[0]] = Annotation(line[0])
ann[line[0]].text = line[2]
data = line[1].split(" ")
ann[line[0]].toponym_type = data[0]
ann[line[0]].start = data[1]
ann[line[0]].end = data[2]
if line[0].startswith("A"): # attribute
data = line[1].split(" ")
if data[1] not in ann:
raise Exception("No record! Check.")
if data[0] == "Modifier_Type":
ann[data[1]].modifier_type = data[2]
elif data[0] == "Non_Locational":
ann[data[1]].non_locational = True
else:
raise Exception("This should never be triggered!")
if line[0].startswith("#"): # annotator note
data = line[1].split(" ")
if data[1] not in ann:
raise Exception("No record! Check.")
ann[data[1]].geonames_id = line[2]
return annotations
def transform_tags(file_name, output):
"""
In order to train the NCRF++ tagger, the data needs to be converted to the 'BMES' format.
:param file_name: which file to read
:param output: where to save the output
"""
inp = codecs.open(file_name, encoding="utf-8")
out = codecs.open(output, mode="w", encoding="utf-8")
last = inp.next()
current = inp.next()
if last.split(" ")[-1].strip() != u"0":
o = last.split(" ")
if current.split(" ")[-1].strip() == u"0":
o[-1] = u"S-" + last.split(" ")[-1]
else:
o[-1] = u"B-" + last.split(" ")[-1]
out.write(u" ".join(o))
else:
out.write(last)
for line in inp:
if current.strip() == u"":
out.write(current)
elif current.split(" ")[-1].strip() != u"0":
o = current.split(" ")
if last.split(" ")[-1].strip() == u"0" or last.strip() == u"":
if line.split(" ")[-1].strip() == u"0":
o[-1] = u"S-" + current.split(" ")[-1]
else:
o[-1] = u"B-" + current.split(" ")[-1]
elif line.split(" ")[-1].strip() == u"0":
o[-1] = u"E-" + current.split(" ")[-1]
else:
o[-1] = u"M-" + current.split(" ")[-1]
out.write(u" ".join(o))
else:
out.write(current)
last = current
current = line
if current.strip() == u"":
out.write(current)
elif current.split(" ")[-1].strip() != u"0":
o = current.split(" ")
if last.split(" ")[-1].strip() == u"0" or last.strip() == u"":
o[-1] = u"S-" + current.split(" ")[-1]
else:
o[-1] = u"E-" + current.split(" ")[-1]
out.write(u" ".join(o))
else:
out.write(current)
def google_NER(text, m):
"""
This subroutine calls the API, processes and returns the annotated text.
:param text: to be parsed
:param m: length of metadata to add to the begin offset character
:return: formatted and annotated text
"""
locations = []
client = language.LanguageServiceClient()
document = types.Document(content=text, type=enums.Document.Type.PLAIN_TEXT, language='en')
entities = client.analyze_entities(document, encoding_type=enums.EncodingType.UTF32).entities
for entity in entities:
for mention in entity.mentions:
if mention.type == 1 and entity.type == 2:
locations.append(u"INDEX\tLOCATION " + str(mention.text.begin_offset + m) + u" "
+ str(m + mention.text.begin_offset + len(mention.text.content)) + u"\t" + mention.text.content + u"\n")
return locations
def run_spacy_ner(nlp):
"""
Tag any text with Spacy NER and save in a folder for evaluation.
:param nlp: a Spacy model e.g. nlp=spacy.load('en_core_web_lg')
"""
for file_name in text_to_ann().keys():
print("Starting file name", file_name)
out_spacy = codecs.open("data/Spacy/" + file_name + ".ann", mode="w", encoding="utf-8")
text = codecs.open(ANNOT_SOURCE_DIR + file_name + ".txt", encoding="utf-8")
meta = len(text.next())
text = text.read()
for entity in nlp(text).ents:
if entity.label_ in [u"LOC", u"FAC", u"NORP", u"GPE"]:
name = entity.text
if name.startswith(u"the"):
name = name[4:]
out_spacy.write(u"INDEX\tLOCATION " + str(entity.start_char + meta) + u" "
+ str(entity.end_char + meta) + u"\t" + name + u"\n")
def run_google_ner():
"""
First, obtain your own Google Cloud credentials... Then you can try out this SOTA NER tagger. Amazing!
"""
for file_name in text_to_ann().keys():
print("Starting file name", file_name)
out_google = codecs.open("data/Google/" + file_name + ".ann", mode="w", encoding="utf-8")
text = codecs.open(ANNOT_SOURCE_DIR + file_name + ".txt", encoding="utf-8")
meta = len(text.next())
google = google_NER(text.read(), meta)
for entity in google:
out_google.write(entity)
def get_id_to_coordinates(con, id): # Adapted from our previous work, see Map Vector repository, thanks!
"""
Access the database to retrieve coordinates from DB.
:param con: sqlite3 database cursor i.e. DB connection
:param id: geonames id of the place
:return: a list of tuples [(latitude, longitude), ...]
"""
result = con.execute(u"SELECT METADATA FROM COORD WHERE NAME = ?", (id,)).fetchone()
if result:
return eval(result[0])
else:
return []
# --------- COPIED WITH A TINY EDIT FROM https://github.com/jiesutd/NCRFpp TO EVALUATE NCRF++ MODEL -----------
def readSentence(input_file):
in_lines = open(input_file,'r').readlines()
sentences = []
labels = []
sentence = []
label = []
for line in in_lines:
if len(line) < 2:
sentences.append(sentence)
labels.append(label)
sentence = []
label = []
else:
pair = line.strip('\n').split(' ')
sentence.append(pair[0])
label.append(pair[-1])
return sentences,labels
def get_ner_fmeasure(golden_lists, predict_lists, label_type="BMES"):
sent_num = len(golden_lists)
golden_full = []
predict_full = []
right_full = []
right_tag = 0
all_tag = 0
for idx in range(0,sent_num):
# word_list = sentence_lists[idx]
golden_list = golden_lists[idx]
predict_list = predict_lists[idx]
for idy in range(len(golden_list)):
if golden_list[idy] == predict_list[idy]:
right_tag += 1
all_tag += len(golden_list)
gold_matrix = get_ner_BMES(golden_list)
pred_matrix = get_ner_BMES(predict_list)
# print "gold", gold_matrix
# print "pred", pred_matrix
right_ner = list(set(gold_matrix).intersection(set(pred_matrix)))
golden_full += gold_matrix
predict_full += pred_matrix
right_full += right_ner
right_num = len(right_full)
golden_num = len(golden_full)
predict_num = len(predict_full)
if predict_num == 0:
precision = -1
else:
precision = (right_num+0.0)/predict_num
if golden_num == 0:
recall = -1
else:
recall = (right_num+0.0)/golden_num
if (precision == -1) or (recall == -1) or (precision+recall) <= 0.:
f_measure = -1
else:
f_measure = 2*precision*recall/(precision+recall)
accuracy = (right_tag+0.0)/all_tag
# print "Accuracy: ", right_tag,"/",all_tag,"=",accuracy
print("gold_num = ", golden_num, " pred_num = ", predict_num, " right_num = ", right_num)
return accuracy, precision, recall, f_measure
def get_ner_BMES(label_list):
# list_len = len(word_list)
# assert(list_len == len(label_list)), "word list size unmatch with label list"
list_len = len(label_list)
begin_label = 'B-'
end_label = 'E-'
single_label = 'S-'
whole_tag = ''
index_tag = ''
tag_list = []
stand_matrix = []
for i in range(0, list_len):
# wordlabel = word_list[i]
current_label = label_list[i].upper()
if begin_label in current_label:
if index_tag != '':
tag_list.append(whole_tag + ',' + str(i-1))
whole_tag = current_label.replace(begin_label,"",1) +'[' +str(i)
index_tag = current_label.replace(begin_label,"",1)
elif single_label in current_label:
if index_tag != '':
tag_list.append(whole_tag + ',' + str(i-1))
whole_tag = current_label.replace(single_label,"",1) +'[' +str(i)
tag_list.append(whole_tag)
whole_tag = ""
index_tag = ""
elif end_label in current_label:
if index_tag != '':
tag_list.append(whole_tag +',' + str(i))
whole_tag = ''
index_tag = ''
else:
continue
if (whole_tag != '')&(index_tag != ''):
tag_list.append(whole_tag)
tag_list_len = len(tag_list)
for i in range(0, tag_list_len):
if len(tag_list[i]) > 0:
tag_list[i] = tag_list[i]+ ']'
insert_list = reverse_style(tag_list[i])
stand_matrix.append(insert_list)
# print stand_matrix
return stand_matrix
def reverse_style(input_string):
target_position = input_string.index('[')
input_len = len(input_string)
output_string = input_string[target_position:input_len] + input_string[0:target_position]
return output_string
def fmeasure_from_file(golden_file, predict_file, label_type="BMES"):
print("Get f measure from file:", golden_file, predict_file)
print("Label format:",label_type)
golden_sent,golden_labels = readSentence(golden_file)
predict_sent,predict_labels = readSentence(predict_file)
A,P,R,F = get_ner_fmeasure(golden_labels, predict_labels, label_type)
print ("P:%sm R:%s, F:%s"%(P,R,F))
# ---------------- END OF CODE FROM https://github.com/jiesutd/NCRFpp TO EVALUATE NCRF++ MODEL ------------------
# run_spacy_ner(nlp=spacy.load('en_core_web_lg'))
# run_google_ner()