-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFFTNet_split.py
166 lines (134 loc) · 7.28 KB
/
FFTNet_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun May 6 21:47:37 2018
@author: sungkyun
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# Models with Preset (for convenience)
'''
dim_input: dimension of input (256 for 8-bit mu-law input)
num_layer: number of layers (11 in paper). receptive field = 2^11 (2,048)
io_ch: number of input(=output) channels in each fft layers
skip_ch: number of skip-channels, only required for fft-residual net.
Annotations:
B: batch dimension
C: channel dimension
L: length dimension
'''
def fftnet_base(input_dim=256, num_layer=11, io_ch=256):
return FFTNet(input_dim=input_dim, num_layer=num_layer, io_ch=io_ch, skip_ch=0, bias=True)
def fftnet_residual(input_dim=256, num_layer=11, io_ch=256, skip_ch=256):
return FFTNet(input_dim=input_dim, num_layer=num_layer, io_ch=io_ch, skip_ch=skip_ch, bais=True)
# FFT_Block: define a basic FFT Block
'''
FFT_Block:
- described in the paper, section 2.2.
- in case of the first layer used in the first FFT_Block,
we use nn.embedding layer for one-hot index(0-255) entries.
'''
class FFT_Block(nn.Module):
def __init__(self, is_first_block=True, initial_input_dim=256, cond_dim=26, io_ch=int, recep_sz=int, bias=True):
super(FFT_Block, self).__init__()
self.is_first_block = is_first_block # If True, an input_embedding_layer will be created (this is not clear in the paper).
self.initial_input_dim=initial_input_dim # This argument is only required for constructing the first block with one-hot input.
self.cond_dim=cond_dim # Number of dimensions of condition input
self.io_ch = io_ch
self.recep_sz = recep_sz # Size of receptive field: i.e., the 1st layer has receptive field of 2^11(=2,048). 2nd has 2^10.
self.bias=bias # If True, use bias in 1x1 conv.
# NN Modules:
if self.is_first_block is True:
self.input_embedding_layer = nn.Embedding(num_embeddings=initial_input_dim, embedding_dim=io_ch) # one-hot_index -> embedding -> 256ch output
self.conv_1x1_L = nn.Conv1d(in_channels=self.io_ch, out_channels=self.io_ch, kernel_size=1, stride=1, bias=self.bias)
self.conv_1x1_R = nn.Conv1d(in_channels=self.io_ch, out_channels=self.io_ch, kernel_size=1, stride=1, bias=self.bias)
self.conv_1x1_VL = nn.Conv1d(in_channels=self.cond_dim, out_channels=self.io_ch, kernel_size=1, stride=1, bias=self.bias)
self.conv_1x1_VR = nn.Conv1d(in_channels=self.cond_dim, out_channels=self.io_ch, kernel_size=1, stride=1, bias=self.bias)
self.conv_1x1_last = nn.Conv1d(in_channels=self.io_ch, out_channels=self.io_ch, kernel_size=1, stride=1, bias=self.bias)
return None
def split_tensor(self, x): # a tensor x with size(BxCxL)
'''
See more details in 'Explanation_of_sum(split_1x1_conv).md' file.
In summary, the required paddings and omissions for preparing split_1x1_conv are:
<First Block>
L: left_zpad(input, recep_sz), right_omit(recep_sz/2)
R: left-zpad(recep_sz/2)
<Normal Blocks>
recep_sz = recep_sz/2 <-- size of halves decreases to half.
L: right_omit(recep_sz/2)
R: left_omit(recep_sz/2)
<Final stage before FC layer>
right_omit(1)
'''
if self.is_first_block is True:
x_L = F.pad(x, (self.recep_sz, 0), 'constant', 0) # left-padding with zeros
x_L = x_L[:, :, 0:x_L.shape[2] - int(self.recep_sz/2)] # right-omit
x_R = F.pad(x, (int(self.recep_sz/2), 0), 'constant', 0) # left-padding with zeros
else: # Normal blocks...
x_L = x[:, :, 0:x.shape[2] - int(self.recep_sz/2)] # right-omit
x_R = x[:, :, int(self.recep_sz/2):] # left-omit
return x_L, x_R
def forward(self, x, cond):
if self.is_first_block is True:
x = self.input_embedding_layer(x) # In : BxL, Out: BxLxC
x = x.permute(0,2,1) # Out: BxCxL
# Split input x into 2 halves, then 1x1 Conv
x_L, x_R = self.split_tensor(x)
z = self.conv_1x1_L(x_L) + self.conv_1x1_R(x_R) # Eq(1), z = w_L*x_L + w_R*x_R
# Adding auxiliary condition as Eq(2) in paper.
h_L, h_R = self.split_tensor(cond) # Split condition input into left and right
z = z + self.conv_1x1_VL(h_L) + self.conv_1x1_VR(h_R) # Eq(2), z = (WL ∗ xL + WR ∗ xR) + (VL ∗ hL + VR ∗ hR)
x = F.relu(self.conv_1x1_last(F.relu(z))) # x = ReLU(conv1x1(ReLU(z)))
# Zero-padding for cond is required for next layer.
return x
'''
FFTNet:
- [11 FFT_blocks] --> [FC_layer] --> [softmax]
'''
class FFTNet(nn.Module):
def __init__(self, input_dim=256, cond_dim=26, num_layer=11, io_ch=256, skip_ch=0, bias=True ):
super(FFTNet, self).__init__()
self.input_dim = input_dim # 256 (=num_classes)
self.cond_dim = cond_dim # 26
self.num_layer = num_layer # 11
self.io_ch = io_ch
self.skip_ch = skip_ch
self.bias = bias
self.max_recep_sz = int(pow(2, self.num_layer)) # 2^11
# Constructing FFT Blocks:
blocks = nn.ModuleList()
for l in range(self.num_layer):
if l is 0: # First block
recep_sz = self.max_recep_sz # 2^11 = 2048
blocks.append( FFT_Block(is_first_block=True,
initial_input_dim=self.input_dim,
cond_dim=self.cond_dim,
io_ch=self.io_ch,
recep_sz=recep_sz,
bias=self.bias) )
else:
recep_sz = int(pow(2, self.num_layer-l)) # 1024, 512, ... 2
blocks.append( FFT_Block(is_first_block=False,
cond_dim=self.cond_dim,
io_ch=self.io_ch,
recep_sz=recep_sz,
bias=self.bias) )
self.fft_blocks=blocks
# Final FC layer:
self.fc = nn.Linear(in_features=self.io_ch, out_features=self.io_ch)
return None
def forward(self, x, cond):
for l in range(self.num_layer):
if l is 0:
x = self.fft_blocks[l](x, cond)
else:
zpad_sz = int(self.max_recep_sz/pow(2, l))
padded_cond = F.pad(cond, (zpad_sz, 0), 'constant', 0)
x = self.fft_blocks[l](x, padded_cond)
x = x[:,:,:-1] # right-omit 1 is required.
x = x.permute(0,2,1) # (BxCxL) --> (BxLxC)
x = self.fc(x) # (BxLxC)
# NOTE: in torch, softmax() is included in CE loss.
return x