-
Notifications
You must be signed in to change notification settings - Fork 0
/
rrt.py
240 lines (187 loc) · 7.12 KB
/
rrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Path planning Sample Code with Randomized Rapidly-Exploring Random Trees (RRT)
author: AtsushiSakai(@Atsushi_twi)
"""
import math
import random
import matplotlib.pyplot as plt
import numpy as np
from timeit import default_timer as timer
show_animation = False
class RRT:
"""
Class for RRT planning
"""
class Node:
"""
RRT Node
"""
def __init__(self, x, y):
self.x = x
self.y = y
self.path_x = []
self.path_y = []
self.parent = None
def __init__(self, start, goal, obstacle_list, rand_area,
expand_dis=0.4, path_resolution=0.05, goal_sample_rate=5, max_iter=100000):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
"""
self.start = self.Node(start[0], start[1])
self.end = self.Node(goal[0], goal[1])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.expand_dis = expand_dis
self.path_resolution = path_resolution
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.node_list = []
def planning(self, animation=True):
"""
rrt path planning
animation: flag for animation on or off
"""
self.node_list = [self.start]
for i in range(self.max_iter):
rnd_node = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node)
nearest_node = self.node_list[nearest_ind]
new_node = self.steer(nearest_node, rnd_node, self.expand_dis)
if self.check_collision(new_node, self.obstacle_list):
self.node_list.append(new_node)
if animation and i % 5 == 0:
self.draw_graph(rnd_node)
if self.calc_dist_to_goal(self.node_list[-1].x, self.node_list[-1].y) <= self.expand_dis:
final_node = self.steer(self.node_list[-1], self.end, self.expand_dis)
if self.check_collision(final_node, self.obstacle_list):
return self.generate_final_course(len(self.node_list) - 1)
if animation and i % 5:
self.draw_graph(rnd_node)
return None # cannot find path
def steer(self, from_node, to_node, extend_length=float("inf")):
new_node = self.Node(from_node.x, from_node.y)
d, theta = self.calc_distance_and_angle(new_node, to_node)
new_node.path_x = [new_node.x]
new_node.path_y = [new_node.y]
if extend_length > d:
extend_length = d
n_expand = math.floor(extend_length / self.path_resolution)
for _ in range(n_expand):
new_node.x += self.path_resolution * math.cos(theta)
new_node.y += self.path_resolution * math.sin(theta)
new_node.path_x.append(new_node.x)
new_node.path_y.append(new_node.y)
d, _ = self.calc_distance_and_angle(new_node, to_node)
if d <= self.path_resolution:
new_node.path_x.append(to_node.x)
new_node.path_y.append(to_node.y)
new_node.parent = from_node
return new_node
def generate_final_course(self, goal_ind):
path = [[self.end.x, self.end.y]]
node = self.node_list[goal_ind]
while node.parent is not None:
path.append([node.x, node.y])
node = node.parent
path.append([node.x, node.y])
return path
def calc_dist_to_goal(self, x, y):
dx = x - self.end.x
dy = y - self.end.y
return math.hypot(dx, dy)
def get_random_node(self):
# if random.randint(0, 100) > self.goal_sample_rate:
# rnd = self.Node(random.uniform(self.min_rand, self.max_rand),
# random.uniform(self.min_rand, self.max_rand))
# else: # goal point sampling
# rnd = self.Node(self.end.x, self.end.y)
rnd = self.Node(random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand))
return rnd
def draw_graph(self, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacle_list:
self.plot_circle(ox, oy, size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis("equal")
plt.axis([self.min_rand, self.max_rand, self.min_rand, self.max_rand])
plt.grid(True)
plt.pause(0.00001)
@staticmethod
def plot_circle(x, y, size, color="-b"): # pragma: no cover
deg = list(range(0, 360, 5))
deg.append(0)
xl = [x + size * math.cos(np.deg2rad(d)) for d in deg]
yl = [y + size * math.sin(np.deg2rad(d)) for d in deg]
plt.plot(xl, yl, color)
@staticmethod
def get_nearest_node_index(node_list, rnd_node):
dlist = [(node.x - rnd_node.x) ** 2 + (node.y - rnd_node.y)
** 2 for node in node_list]
minind = dlist.index(min(dlist))
return minind
@staticmethod
def check_collision(node, obstacleList):
if node is None:
return False
for (ox, oy, size) in obstacleList:
dx_list = [ox - x for x in node.path_x]
dy_list = [oy - y for y in node.path_y]
d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)]
if min(d_list) <= size ** 2:
return False # collision
return True # safe
@staticmethod
def calc_distance_and_angle(from_node, to_node):
dx = to_node.x - from_node.x
dy = to_node.y - from_node.y
d = math.hypot(dx, dy)
theta = math.atan2(dy, dx)
return d, theta
def main(gx=6.0, gy=10.0):
print("start " + __file__)
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2),
(8, 10, 1)
] # [x, y, radius]
# Set Initial parameters
rrt = RRT(start=[-5, -8],
goal=[gx, gy],
rand_area=[-15.0, 15.0],
obstacle_list=obstacleList)
start = timer()
path = rrt.planning(animation=show_animation)
end = timer()
if path is None:
print("Cannot find path")
else:
print("found path!!")
print(f"Execution Time: {(end - start)} seconds")
# Draw final path
rrt.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.01) # Need for Mac
plt.show()
if __name__ == '__main__':
main()