-
Notifications
You must be signed in to change notification settings - Fork 0
/
EarlyStopping.py
55 lines (48 loc) · 1.55 KB
/
EarlyStopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import torch
class EarlyStopping:
"""EarlyStopping.
Attributes:
patience: Number of possible epochs with no improvement.
delta: Minimum change to qualify as an improvement.
path: Path to save model checkpoint.
"""
def __init__(self, patience=10, delta=0, path=''):
"""Initialize EarlyStopping."""
self.patience = patience
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.inf
self.delta = delta
self.path = path
def __call__(self, val_loss, model):
"""Monitor the improvement of the model.
Args:
val_loss: Validation loss.
model: Model.
Returns:
None.
"""
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model)
elif score < self.best_score + self.delta:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model)
self.counter = 0
def save_checkpoint(self, val_loss, model):
"""Save the model checkpoint.
Args:
val_loss: Validation loss.
model: Trained model.
Returns:
None.
"""
torch.save(model.state_dict(), self.path)
self.val_loss_min = val_loss