From fd2337009e47dc05ce2979beea34f0f3eecddce8 Mon Sep 17 00:00:00 2001 From: Jason Gross Date: Mon, 18 Jul 2022 13:31:15 -0400 Subject: [PATCH] Revert "Revert "More efficient datastructures for asm dag"" This reverts commit de47c096b0f0bbee3763ab6293ed8e8e41413147. --- src/Assembly/Symbolic.v | 290 ---------------------------------------- 1 file changed, 290 deletions(-) diff --git a/src/Assembly/Symbolic.v b/src/Assembly/Symbolic.v index 333d641b4a..9777aa5414 100644 --- a/src/Assembly/Symbolic.v +++ b/src/Assembly/Symbolic.v @@ -62,7 +62,6 @@ Require Import Crypto.Util.Tactics.SetEvars. Require Import Crypto.Util.Prod. Require Import Crypto.Util.Tactics.SplitInContext. Require Import Crypto.Util.Tactics.SpecializeBy. -Require Import Crypto.Util.Tactics.SpecializeAllWays. Require Import Crypto.Util.Tactics.SpecializeUnderBindersBy. Require Import Crypto.Util.Tactics.Head. Require Import Crypto.Util.ZUtil.Lxor. @@ -525,294 +524,7 @@ Proof. repeat intro; subst; assumption. Qed. Existing Class node_ok. #[global] Hint Extern 1 (node_ok ?i ?n) => exact (@new_node_ok n I i) : typeclass_instances. -Module Old. -Module dag. - Definition t : Type := list (node idx * description). - Definition empty : t := nil. - Definition size (d : t) : N := N.of_nat (List.length d). - Definition lookup (d : t) (i : idx) : option (node idx) - := option_map fst (List.nth_error d (N.to_nat i)). - Definition reverse_lookup (d : t) (i : node idx) : option idx - := option_map N.of_nat (List.indexof (fun '(n', _) => node_beq N.eqb i n') d). - Definition size_ok (d : t) : Prop - := True. - Definition all_nodes_ok (d : t) : Prop - := forall i r, lookup d i = Some r -> node_ok i r. - Definition ok (d : t) : Prop - := size_ok d - /\ (forall i n, reverse_lookup d n = Some i <-> lookup d i = Some n) - /\ (forall i n, lookup d i = Some n -> (i < size d)%N). - Definition merge_node {descr : description} (n : node idx) (d : t) : idx * t - := match reverse_lookup d n with - | Some i => (i, d) - | None - => (size d, d ++ [(n, descr)]) - end. - Definition gensym (s:OperationSize) (d : t) : node idx - := (old s (size d), []). - Existing Class ok. - Existing Class all_nodes_ok. - - Definition get_eager_description_description (d : eager_description) : option string - := option_map fst d. - Definition get_eager_description_always_show (d : eager_description) : bool - := match d with Some (_, always_show) => always_show | None => false end. - Definition force_description : description -> eager_description - := option_map (fun '(descr, always_show) => (descr tt, always_show)). - - Module eager. - Definition t := list (idx * node idx * eager_description). - Definition force (d : dag.t) : eager.t - := List.map (fun '(idx, (n, descr)) => (N.of_nat idx, n, force_description descr)) - (List.enumerate d). - Definition description_lookup (d : eager.t) (descr : string) : list idx - := List.map (fun '(idx, _, _) => idx) (List.filter (fun '(_, _, descr') => match get_eager_description_description descr' with Some descr' => String.eqb descr descr' | _ => false end) d). - End eager. - - Definition M T := t -> T * t. - Definition bind {A B} (v : M A) (f : A -> M B) : M B - := fun d => let '(v, d) := v d in f v d. - Definition ret {A} (v : A) : M A - := fun d => (v, d). - - Lemma iff_reverse_lookup_lookup d {ok : ok d} - : forall i n, reverse_lookup d n = Some i <-> lookup d i = Some n. - Proof. apply ok. Qed. - - Lemma lookup_value_size d {ok : ok d} - : forall i n, lookup d i = Some n -> (i < size d)%N. - Proof. apply ok. Qed. - - Lemma lookup_size_error d {ok : ok d} - : forall i, (size d <= i)%N -> lookup d i = None. - Proof. - intro i; generalize (lookup_value_size d i); destruct lookup; intuition. - specialize_under_binders_by reflexivity. - lia. - Qed. - - Lemma lookup_merge_node {descr : description} (n : node idx) (d : t) i - {ok : ok d} - : dag.lookup (snd (dag.merge_node n d)) i = match dag.lookup d i with - | Some v => Some v - | None - => if (i =? size d)%N && Option.is_None (reverse_lookup d n) - then Some n - else None - end. - Proof. - cbv [dag.merge_node andb is_None lookup dag.ok size] in *; - repeat first [ assumption - | reflexivity - | lia - | progress specialize_under_binders_by eassumption - | progress subst - | progress destruct_head'_and - | progress reflect_hyps - | progress cbn [fst snd option_map List.nth_error] in * - | progress cbv [option_map] in * - | rewrite Nat2N.id in * - | rewrite nth_error_app in * - | rewrite Nat.sub_diag in * - | rewrite nth_error_length_error in * by lia - | rewrite @nth_error_nil_error in * - | congruence - | break_innermost_match_step - | match goal with - | [ H : nth_error (_ :: _) ?x = _ |- _ ] => destruct x eqn:?; cbn [nth_error] in H - end ]. - Qed. - - Lemma reverse_lookup_merge_node {d : t} - {ok : ok d} {descr : description} (n n' : node idx) - : dag.reverse_lookup (snd (dag.merge_node n d)) n' - = if node_beq N.eqb n' n - then Some (fst (dag.merge_node n d)) - else dag.reverse_lookup d n'. - Proof. - cbv [dag.merge_node andb is_None reverse_lookup dag.ok size] in *; - repeat first [ assumption - | reflexivity - | lia - | congruence - | progress inversion_option - | progress specialize_under_binders_by eassumption - | progress subst - | progress destruct_head'_and - | progress reflect_hyps - | rewrite @indexof_app in * - | progress cbv [option_map Option.value Option.sequence idx] in * - | progress cbn [fst snd option_map indexof] in * - | rewrite Nat.add_0_r - | congruence - | break_innermost_match_step - | progress break_match - | progress break_match_hyps ]. - Qed. - - Lemma fst_merge_node {descr : description} (n : node idx) (d : t) - : fst (dag.merge_node n d) = match reverse_lookup d n with - | Some i => i - | None => size d - end. - Proof. cbv [merge_node]; break_innermost_match; reflexivity. Qed. - - Lemma reverse_lookup_gensym s (d : t) - {ok : ok d} - {all_nodes_ok : all_nodes_ok d} - : dag.reverse_lookup d (gensym s d) = None. - Proof. - cbv [dag.all_nodes_ok] in *. - destruct (reverse_lookup d (gensym s d)) as [i|] eqn:H; [ | reflexivity ]. - rewrite iff_reverse_lookup_lookup in H by assumption. - cbv [node_ok gensym] in *. - specialize_under_binders_by eassumption. - specialize_under_binders_by reflexivity. - apply lookup_value_size in H; trivial. - lia. - Qed. - - Lemma lookup_merge_node_gensym {descr : description} s (d : t) i - {ok : ok d} - {all_nodes_ok : all_nodes_ok d} - : dag.lookup (snd (dag.merge_node (gensym s d) d)) i - = if (i =? size d)%N - then Some (gensym s d) - else dag.lookup d i. - Proof. - rewrite lookup_merge_node, reverse_lookup_gensym by assumption. - cbv [andb is_None]. - break_innermost_match; try reflexivity; reflect_hyps; subst. - rewrite lookup_size_error in * by first [ assumption | lia ]. - congruence. - Qed. - - Lemma fst_merge_node_gensym {descr : description} s (d : t) - {ok : ok d} - {all_nodes_ok : all_nodes_ok d} - : fst (dag.merge_node (gensym s d) d) = size d. - Proof. - rewrite fst_merge_node, reverse_lookup_gensym by assumption; reflexivity. - Qed. - - Lemma lookup_empty i : lookup empty i = None. - Proof. cbv [empty lookup]; now rewrite nth_error_nil_error. Qed. - Lemma reverse_lookup_empty n : reverse_lookup empty n = None. - Proof. reflexivity. Qed. - Lemma size_empty : size empty = 0%N. - Proof. reflexivity. Qed. - - Lemma size_merge_node {descr:description} n (d:t) - : size (snd (merge_node n d)) = match reverse_lookup d n with Some _ => size d | None => N.succ (size d) end. - Proof. - cbv [merge_node size]; break_innermost_match; cbn [snd] in *; inversion_pair; subst; rewrite ?app_length; cbn [List.length]; lia. - Qed. - - Lemma size_merge_node_le {descr:description} n (d:t) - : (size d <= size (snd (merge_node n d)))%N. - Proof. - rewrite size_merge_node; break_innermost_match; lia. - Qed. - - Lemma size_merge_node_gensym {descr:description} s (d:t) - {ok : ok d} - {all_nodes_ok : all_nodes_ok d} - : size (snd (merge_node (gensym s d) d)) = N.succ (size d). - Proof. rewrite size_merge_node, reverse_lookup_gensym by assumption; reflexivity. Qed. - Global Instance empty_ok : ok empty | 10. - Proof. - repeat apply conj; cbv [size empty]; intros *; cbv [lookup]; - rewrite ?nth_error_nil_error; cbn; try exact I; - intuition first [ congruence | lia ]. - Qed. - Global Instance empty_all_nodes_ok : all_nodes_ok empty | 10. - Proof. - repeat intro; subst; rewrite lookup_empty in *; congruence. - Qed. - Global Instance merge_node_ok {descr:description} {n:node idx} {d : t} {dok : ok d} : ok (snd (merge_node n d)) | 10. - Proof. - repeat apply conj; cbv [size empty size_ok]; intros *. - all: rewrite ?lookup_merge_node, ?reverse_lookup_merge_node by assumption. - all: let tac := - repeat first [ progress cbv [ok size_ok size merge_node lookup reverse_lookup] in * - | progress destruct_head'_and - | progress inversion_option - | progress subst - | exfalso; assumption - | progress inversion_pair - | progress cbn [fst snd List.length] in * - | break_innermost_match_step - | progress intros - | progress destruct_head'_ex - | progress destruct_head'_and - | progress reflect_hyps - | progress split_iff - | apply conj - | exact I - | progress cbv [option_map idx] in * - | progress break_match - | progress break_match_hyps - | lia - | congruence - | rewrite Nat2N.id in * - | rewrite N2Nat.id in * - | rewrite app_length - | progress specialize_under_binders_by reflexivity - | progress specialize_under_binders_by rewrite Nat2N.id - | progress destruct_head'_prod - | match goal with - | [ H : forall i n, match nth_error _ (N.to_nat i) with _ => _ end = _ -> _ |- _ ] - => specialize (fun i => H (N.of_nat i)) - | [ H : _ = Some _ |- _ ] => rewrite H in * - | [ H : N.of_nat _ = N.of_nat _ |- _ ] => apply (f_equal N.to_nat) in H - end - | solve [ exfalso; auto ] ] in - tac; - repeat match goal with - | [ H : _ = Some _ |- _ ] => progress specialize_all_ways_under_binders_by rewrite H - end; - tac. - Qed. - Global Instance merge_node_all_nodes_ok {descr:description} {n:node idx} {d : t} {dok : ok d} {dnok : all_nodes_ok d} {nok : node_ok (size d) n} - : all_nodes_ok (snd (merge_node n d)) | 10. - Proof. - cbv [all_nodes_ok] in *; intros i r; specialize (dnok i r). - rewrite lookup_merge_node in * by assumption. - cbv [andb is_None]; break_innermost_match; intros; inversion_option; reflect_hyps; subst; auto. - Qed. - Global Instance gensym_node_ok s d : node_ok (size d) (gensym s d) | 10. - Proof. - cbv [node_ok]; intros * H. - inversion H; subst; reflexivity. - Qed. - Global Hint Extern 1 (node_ok (size _) (gensym _ _)) => exact (@gensym_node_ok _ _) : typeclass_instances. - - Lemma eq_fst_merge_node_change_descr {descr1 descr2 : description} (n : node idx) (d : t) - : fst (@merge_node descr1 n d) = fst (@merge_node descr2 n d). - Proof. - cbv [merge_node]; break_innermost_match; reflexivity. - Qed. - - (* lemmas below here don't unfold the definitions *) - Lemma lookup_merge_node' {descr1 descr2 : description} (n : node idx) (d : t) - {ok : ok d} - : dag.lookup (snd (@dag.merge_node descr1 n d)) (fst (@dag.merge_node descr2 n d)) = Some n. - Proof. - rewrite lookup_merge_node, fst_merge_node by assumption. - cbv [andb is_None]. - repeat first [ rewrite iff_reverse_lookup_lookup in * by assumption - | rewrite lookup_size_error in * by first [ assumption | lia ] - | progress inversion_option - | progress subst - | reflexivity - | progress reflect_hyps - | lia - | break_innermost_match_step ]. - Qed. -End dag. -End Old. -Module New. Module dag. Module IdxMap <: UsualS := NMap <+ FMapFacts.Facts <+ Facts_RemoveHints <+ FMapFacts.AdditionalFacts. Module ListIdxMap <: UsualS := ListNMap. @@ -1081,8 +793,6 @@ Module dag. | break_innermost_match_step ]. Qed. End dag. -End New. -Export Old. Global Arguments dag.t : simpl never. Global Arguments dag.empty : simpl never. Global Arguments dag.size : simpl never.