-
Notifications
You must be signed in to change notification settings - Fork 38
/
main.py
165 lines (126 loc) · 4.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import random
import os
from scipy.misc import imsave
from model import VAE
from data_manager import DataManager
tf.app.flags.DEFINE_integer("epoch_size", 2000, "epoch size")
tf.app.flags.DEFINE_integer("batch_size", 64, "batch size")
tf.app.flags.DEFINE_float("gamma", 100.0, "gamma param for latent loss")
tf.app.flags.DEFINE_float("capacity_limit", 20.0,
"encoding capacity limit param for latent loss")
tf.app.flags.DEFINE_integer("capacity_change_duration", 100000,
"encoding capacity change duration")
tf.app.flags.DEFINE_float("learning_rate", 5e-4, "learning rate")
tf.app.flags.DEFINE_string("checkpoint_dir", "checkpoints", "checkpoint directory")
tf.app.flags.DEFINE_string("log_file", "./log", "log file directory")
tf.app.flags.DEFINE_boolean("training", True, "training or not")
flags = tf.app.flags.FLAGS
def train(sess,
model,
manager,
saver):
summary_writer = tf.summary.FileWriter(flags.log_file, sess.graph)
n_samples = manager.sample_size
reconstruct_check_images = manager.get_random_images(10)
indices = list(range(n_samples))
step = 0
# Training cycle
for epoch in range(flags.epoch_size):
# Shuffle image indices
random.shuffle(indices)
avg_cost = 0.0
total_batch = n_samples // flags.batch_size
# Loop over all batches
for i in range(total_batch):
# Generate image batch
batch_indices = indices[flags.batch_size*i : flags.batch_size*(i+1)]
batch_xs = manager.get_images(batch_indices)
# Fit training using batch data
reconstr_loss, latent_loss, summary_str = model.partial_fit(sess, batch_xs, step)
summary_writer.add_summary(summary_str, step)
step += 1
# Image reconstruction check
reconstruct_check(sess, model, reconstruct_check_images)
# Disentangle check
disentangle_check(sess, model, manager)
# Save checkpoint
saver.save(sess, flags.checkpoint_dir + '/' + 'checkpoint', global_step = step)
def reconstruct_check(sess, model, images):
# Check image reconstruction
x_reconstruct = model.reconstruct(sess, images)
if not os.path.exists("reconstr_img"):
os.mkdir("reconstr_img")
for i in range(len(images)):
org_img = images[i].reshape(64, 64)
org_img = org_img.astype(np.float32)
reconstr_img = x_reconstruct[i].reshape(64, 64)
imsave("reconstr_img/org_{0}.png".format(i), org_img)
imsave("reconstr_img/reconstr_{0}.png".format(i), reconstr_img)
def disentangle_check(sess, model, manager, save_original=False):
img = manager.get_image(shape=1, scale=2, orientation=5)
if save_original:
imsave("original.png", img.reshape(64, 64).astype(np.float32))
batch_xs = [img]
z_mean, z_log_sigma_sq = model.transform(sess, batch_xs)
z_sigma_sq = np.exp(z_log_sigma_sq)[0]
# Print variance
zss_str = ""
for i,zss in enumerate(z_sigma_sq):
str = "z{0}={1:.4f}".format(i,zss)
zss_str += str + ", "
print(zss_str)
# Save disentangled images
z_m = z_mean[0]
n_z = 10
if not os.path.exists("disentangle_img"):
os.mkdir("disentangle_img")
for target_z_index in range(n_z):
for ri in range(n_z):
value = -3.0 + (6.0 / 9.0) * ri
z_mean2 = np.zeros((1, n_z))
for i in range(n_z):
if( i == target_z_index ):
z_mean2[0][i] = value
else:
z_mean2[0][i] = z_m[i]
reconstr_img = model.generate(sess, z_mean2)
rimg = reconstr_img[0].reshape(64, 64)
imsave("disentangle_img/check_z{0}_{1}.png".format(target_z_index,ri), rimg)
def load_checkpoints(sess):
saver = tf.train.Saver()
checkpoint = tf.train.get_checkpoint_state(flags.checkpoint_dir)
if checkpoint and checkpoint.model_checkpoint_path:
saver.restore(sess, checkpoint.model_checkpoint_path)
print("loaded checkpoint: {0}".format(checkpoint.model_checkpoint_path))
else:
print("Could not find old checkpoint")
if not os.path.exists(flags.checkpoint_dir):
os.mkdir(flags.checkpoint_dir)
return saver
def main(argv):
manager = DataManager()
manager.load()
sess = tf.Session()
model = VAE(gamma=flags.gamma,
capacity_limit=flags.capacity_limit,
capacity_change_duration=flags.capacity_change_duration,
learning_rate=flags.learning_rate)
sess.run(tf.global_variables_initializer())
saver = load_checkpoints(sess)
if flags.training:
# Train
train(sess, model, manager, saver)
else:
reconstruct_check_images = manager.get_random_images(10)
# Image reconstruction check
reconstruct_check(sess, model, reconstruct_check_images)
# Disentangle check
disentangle_check(sess, model, manager)
if __name__ == '__main__':
tf.app.run()