-
Notifications
You must be signed in to change notification settings - Fork 4
/
fips204.py
914 lines (744 loc) · 27.4 KB
/
fips204.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# fips204.py
# 2024-08-16 Markku-Juhani O. Saarinen <mjos@iki.fi> See LICENSE.
# === FIPS 204 implementation https://doi.org/10.6028/NIST.FIPS.204
# ML-DSA / Module-Lattice-Based Digital Signature Standard
# test_mldsa is only used by the unit test in the end
from test_mldsa import test_mldsa
# hash functions
from Crypto.Hash import SHAKE128, SHAKE256, SHA3_256, SHA3_512, SHA256, SHA512
ML_DSA_Q = 8380417
ML_DSA_N = 256
# Appendix B - Zetas Array
ML_DSA_ZETAS = [
0, 4808194, 3765607, 3761513, 5178923, 5496691, 5234739, 5178987,
7778734, 3542485, 2682288, 2129892, 3764867, 7375178, 557458, 7159240,
5010068, 4317364, 2663378, 6705802, 4855975, 7946292, 676590, 7044481,
5152541, 1714295, 2453983, 1460718, 7737789, 4795319, 2815639, 2283733,
3602218, 3182878, 2740543, 4793971, 5269599, 2101410, 3704823, 1159875,
394148, 928749, 1095468, 4874037, 2071829, 4361428, 3241972, 2156050,
3415069, 1759347, 7562881, 4805951, 3756790, 6444618, 6663429, 4430364,
5483103, 3192354, 556856, 3870317, 2917338, 1853806, 3345963, 1858416,
3073009, 1277625, 5744944, 3852015, 4183372, 5157610, 5258977, 8106357,
2508980, 2028118, 1937570, 4564692, 2811291, 5396636, 7270901, 4158088,
1528066, 482649, 1148858, 5418153, 7814814, 169688, 2462444, 5046034,
4213992, 4892034, 1987814, 5183169, 1736313, 235407, 5130263, 3258457,
5801164, 1787943, 5989328, 6125690, 3482206, 4197502, 7080401, 6018354,
7062739, 2461387, 3035980, 621164, 3901472, 7153756, 2925816, 3374250,
1356448, 5604662, 2683270, 5601629, 4912752, 2312838, 7727142, 7921254,
348812, 8052569, 1011223, 6026202, 4561790, 6458164, 6143691, 1744507,
1753, 6444997, 5720892, 6924527, 2660408, 6600190, 8321269, 2772600,
1182243, 87208, 636927, 4415111, 4423672, 6084020, 5095502, 4663471,
8352605, 822541, 1009365, 5926272, 6400920, 1596822, 4423473, 4620952,
6695264, 4969849, 2678278, 4611469, 4829411, 635956, 8129971, 5925040,
4234153, 6607829, 2192938, 6653329, 2387513, 4768667, 8111961, 5199961,
3747250, 2296099, 1239911, 4541938, 3195676, 2642980, 1254190, 8368000,
2998219, 141835, 8291116, 2513018, 7025525, 613238, 7070156, 6161950,
7921677, 6458423, 4040196, 4908348, 2039144, 6500539, 7561656, 6201452,
6757063, 2105286, 6006015, 6346610, 586241, 7200804, 527981, 5637006,
6903432, 1994046, 2491325, 6987258, 507927, 7192532, 7655613, 6545891,
5346675, 8041997, 2647994, 3009748, 5767564, 4148469, 749577, 4357667,
3980599, 2569011, 6764887, 1723229, 1665318, 2028038, 1163598, 5011144,
3994671, 8368538, 7009900, 3020393, 3363542, 214880, 545376, 7609976,
3105558, 7277073, 508145, 7826699, 860144, 3430436, 140244, 6866265,
6195333, 3123762, 2358373, 6187330, 5365997, 6663603, 2926054, 7987710,
8077412, 3531229, 4405932, 4606686, 1900052, 7598542, 1054478, 7648983 ]
# zetas = [ (1753 ** self.bitrev8(i)) % ML_DSA_Q for i in range(256) ]
# Sect 4, Table 1. ML-DSA parameter sets
# (d, tau, lam, gam1, gam2, k, ell, eta, beta, omega)
ML_DSA_PARAM = {
"ML-DSA-44" : (13, 39, 128, 2**17, (ML_DSA_Q-1)//88, 4, 4, 2, 78, 80),
"ML-DSA-65" : (13, 49, 192, 2**19, (ML_DSA_Q-1)//32, 6, 5, 4, 196, 55),
"ML-DSA-87" : (13, 60, 256, 2**19, (ML_DSA_Q-1)//32, 8, 7, 2, 120, 75)
}
class ML_DSA:
def __init__(self, param='ML-DSA-65'):
""" Initialize the class with parameters."""
if param not in ML_DSA_PARAM:
raise ValueError
self.q = ML_DSA_Q
self.n = ML_DSA_N
(self.d, self.tau, self.lam, self.gam1, self.gam2, self.k, self.ell,
self.eta, self.beta, self.omega) = ML_DSA_PARAM[param]
# 3.7 Use of Symmetric Cryptography
def h(self, s, l):
return SHAKE256.new(s).read(l)
# Algorithm 2, ML-DSA.Sign(sk, M, ctx)
# XXX: Not covered by test vectors.
def sign(self, sk, m, ctx, rnd_in=None, param=None):
if param != None:
self.__init__(param)
if len(ctx) > 255:
return None
if rnd_in == None:
rnd = b'\x00'*32
else:
rnd = rnd_in
mp = ( self.integer_to_bytes(0, 1) +
self.integer_to_bytes(len(ctx), 1) + ctx + m )
sig = self.sign_internal(sk, mp, rnd)
return sig
# Algorithm 3, ML-DSA.Verify(pk, M, sigma, ctx)
# XXX: Not covered by test vectors.
def verify(self, pk, m, sig, ctx, param=None):
if param != None:
self.__init__(param)
if len(ctx) > 255:
return False
mp = ( self.integer_to_bytes(0, 1) +
self.integer_to_bytes(len(ctx), 1) + ctx + m)
return self.verify_internal(pk, mp, sig)
# Algorithm 4, HashML-DSA.Sign(sk, M, ctx, PH)
# XXX: Not covered by test vectors.
def hash_ml_dsa_sign(self, sk, m, ctx, ph, rnd_in=None, param=None):
if param != None:
self.__init__(param)
if len(ctx) > 255:
return None
if rnd_in == None:
rnd = b'\x00'*32
else:
rnd = rnd_in
if ph == 'SHA-256':
oid = bytes([ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x01])
phm = SHA256.new(m).digest()
elif ph == 'SHA-512':
oid = bytes([ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x03])
phm = SHA512.new(m).digest()
elif ph == 'SHAKE128':
oid = bytes([ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x0B])
phm = SHAKE128.new(m).read(256 // 8)
else:
return None
mp = ( self.integer_to_bytes(1, 1) +
self.integer_to_bytes(len(ctx), 1) +
ctx + oid + phm )
sig = self.sign_internal(sk, mp, rnd)
return sig
# Algorithm 5, HashML-DSA.Verify(pk, M, sig, ctx, PH)
# Note 2024-08-20: Not covered by test vectors.
def hash_ml_dsa_verify(self, pk, m, sig, ctx, ph, param=None):
if param != None:
self.__init__(param)
if len(ctx) > 255:
return None
if ph == 'SHA-256':
oid = bytes([ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x01])
phm = SHA256.new(m).digest()
elif ph == 'SHA-512':
oid = bytes([ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x03])
phm = SHA512.new(m).digest()
elif ph == 'SHAKE128':
oid = bytes([ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x0B])
phm = SHAKE128.new(m).read(256 // 8)
else:
return False
mp = ( self.integer_to_bytes(1, 1) +
self.integer_to_bytes(len(ctx), 1) +
ctx + oid + phm )
return self.verify_internal(pk, mp, sig)
# Algorithm 6, ML-DSA.KeyGen_internal(xi)
def keygen_internal(self, xi, param=None):
if param != None:
self.__init__(param)
# print('# keygen_internal()', param)
# print('# seed:', xi.hex())
se = self.h(xi +
self.integer_to_bytes(self.k, 1) +
self.integer_to_bytes(self.ell, 1), 128 )
rho = se[0:32]
rhop = se[32:96]
kk = se[96:128]
# print('# rho:', rho.hex())
# print('# rhoPrime:', rhop.hex())
# print('# k:', kk.hex())
ah = self.expand_a(rho)
# print('# aHat:', ah)
(s1, s2) = self.expand_s(rhop)
# print('# s1:', s1)
# print('# s2:', s2)
s1h = [ self.ntt(v) for v in s1 ]
# print('# s1Hat:', s1h)
t = self.matrix_vector_ntt(ah, s1h)
# print('# aHat*s1Hat:', t)
t = [ self.add(self.ntt_inverse(t[i]), s2[i])
for i in range(self.k) ]
# print('# t:', t)
(t1, t0) = self.power2round(t)
# print('# t0:', t0)
# print('# t1:', t1)
pk = self.pk_encode(rho, t1)
# print('# pk:', pk.hex())
tr = self.h(pk, 64)
# print('# tr:', tr.hex())
sk = self.sk_encode(rho, kk, tr, s1, s2, t0)
# print('# sk:', sk.hex())
return pk, sk
# Algorithm 7, ML-DSA.Sign_internal(sk, M', rnd)
def sign_internal(self, sk, mp, rnd, param=None):
if param != None:
self.__init__(param)
(rho, kk, tr, s1, s2, t0) = self.sk_decode(sk)
# print('# sign_internal()', param)
# print('# rho:', rho.hex())
# print('# tr:', tr.hex())
# print('# rnd:', rnd.hex())
s1h = [ self.ntt(s1i) for s1i in s1 ]
# print('# s1Hat:', s1h)
s2h = [ self.ntt(s2i) for s2i in s2 ]
# print('# s2Hat:', s2h)
t0h = [ self.ntt(t0i) for t0i in t0 ]
# print('# t0Hat:', t0h)
ah = self.expand_a(rho)
# print('# aHat:', ah)
mu = self.h(tr + mp, 64)
# print('# mu:', mu.hex())
rhopp = self.h(kk + rnd + mu, 64)
# print('# rhoPrime:', rhopp.hex())
kappa = 0
(z, h) = (None, None)
while (z, h) == (None, None):
y = self.expand_mask(rhopp, kappa)
# print('# y:', y)
yh = [ self.ntt(yi) for yi in y ]
# print('# NTT(y):', yh)
w = self.matrix_vector_ntt(ah, yh)
# print('# aHat*NTT(y):', w)
w = [ self.ntt_inverse(wi) for wi in w ]
# print('# w:', w)
w1 = self.high_bits(w)
# print('# w1:', w1)
w1t = self.w1_encode(w1)
# print('# w1Encode:', w1t.hex())
ct = self.h(mu + w1t, self.lam // 4)
# print('# cTilde:', ct.hex())
c = self.sample_in_ball(ct)
# print('# c:', c)
ch = self.ntt(c)
# print('# cHat:', ch)
cs1 = [ self.ntt_inverse(self.mul_ntt(ch, s1i)) for s1i in s1h ]
# print('# cs1:', cs1)
cs2 = [ self.ntt_inverse(self.mul_ntt(ch, s2i)) for s2i in s2h ]
# print('# cs2:', cs2)
z = [ self.add(y[i], cs1[i]) for i in range(self.ell) ]
# print('# z:', z)
r0 = [ self.sub(w[i], cs2[i]) for i in range(self.k) ]
r0 = self.low_bits(r0)
# print('# r0:', r0)
z_norm = self.inf_norm(z)
# print('# ||z||:', z_norm)
r0_norm = self.inf_norm(r0)
# print('# ||r0||:', r0_norm)
if (z_norm >= self.gam1 - self.beta or
r0_norm >= self.gam2 - self.beta):
# print('# norm check fail')
(z, h) = (None, None)
else:
ct0 = [ self.ntt_inverse(self.mul_ntt(ch, t0i))
for t0i in t0h ]
# print('# ct0:', ct0)
ct0n = [ self.neg(ct0i) for ct0i in ct0 ]
# print('# -ct0:', ct0n)
h_r = [ self.add(self.sub(w[i], cs2[i]), ct0[i])
for i in range(self.k) ]
# print('# w - cs2 + ct0:', h_r)
h = self.make_hint(ct0n, h_r)
# print('# h', h)
h_wt = self.weight(h)
# print('# ||h||:', h_wt)
ct0_norm = self.inf_norm(ct0)
# print('# ||ct0||:', ct0_norm)
if ct0_norm >= self.gam2 or h_wt > self.omega:
(z, h) = (None, None)
kappa += self.ell
z = [ [ self.modpm(x, self.q) for x in zi ] for zi in z ]
sig = self.sig_encode(ct, z, h)
# print('# sig:', sig.hex())
return sig
# Algorithm 8, ML-DSA.Verify_internal(pk, M', sigma)
def verify_internal(self, pk, mp, sig, param=None):
if param != None:
self.__init__(param)
(rho, t1) = self.pk_decode(pk)
(ct, z, h) = self.sig_decode(sig)
# print('# rho:', rho.hex())
# print('# t1:', t1)
# print('# cTilde:', ct.hex())
# print('# z:', z)
if h == None:
return False
ah = self.expand_a(rho)
# print('# aHat:', ah)
tr = self.h(pk, 64)
# print('# tr:', tr.hex())
mu = self.h(tr + mp, 64)
# print('# mu:', mu.hex())
c = self.sample_in_ball(ct)
# print('# c:', c)
zh = [ self.ntt(zi) for zi in z ]
# print('# zHat:', zh)
wp = self.matrix_vector_ntt(ah, zh)
# print('# aHat*NTT(z):', wp)
th = [ self.ntt([ x << self.d for x in t1i ]) for t1i in t1 ]
# print('# NTT(t1*2^d):', th)
ch = self.ntt(c)
# print('# NTT(c):', ch)
th = [ self.mul_ntt(ch, thi) for thi in th ]
# print('# NTT(c)*NTT(t1*2^d):', th)
wp = [ self.ntt_inverse(self.sub(wp[i], th[i]))
for i in range(self.k) ]
# print('# wPrimeApprox:', wp)
w1p = self.use_hint(h, wp)
# print('# w1Prime;', w1p)
ctp = self.h(mu + self.w1_encode(w1p), self.lam // 4)
# print('# cTildePrime:', ctp.hex())
z_norm = self.inf_norm(z)
# print('# ||z||:', z_norm)
return z_norm < self.gam1 - self.beta and ct == ctp
# Algorithm 9, IntegerToBits(x, alpha)
def integer_to_bits(self, x, alpha):
y = bytearray(alpha)
for i in range(alpha):
y[i] = x & 1
x >>= 1
return y
# Algorithm 10, BitsToInteger(y, alpha)
def bits_to_integer(self, y, alpha):
x = 0
for i in range(1, alpha + 1):
x = 2*x + y[alpha - i]
return x
# Algorithm 11, IntegerToBytes(x, alpha)
def integer_to_bytes(self, x, alpha):
y = bytearray(alpha)
for i in range(alpha):
y[i] = x & 0xff
x >>= 8
return y
# Algorithm 12, BitsToBytes(y)
def bits_to_bytes(self, y):
alpha = len(y)
z = bytearray(alpha // 8)
for i in range(0, alpha, 8):
x = 0
for j in range(8):
x += y[i + j] << j
z[i // 8] = x
return z
# Algorithm 13, BytesToBits(z)
def bytes_to_bits(self, z):
alpha = len(z)
y = bytearray(8*alpha)
for i in range(alpha):
x = z[i]
for j in range(8):
y[8*i + j] = (x >> j) & 1
return y
# Algorithm 14, CoeffFromThreeBytes(b0, b1, b2)
def coeff_from_three_bytes(self, b0, b1, b2):
if b2 > 127:
b2 -= 128
z = (b2 << 16) + (b1 << 8) + b0
if z < self.q:
return z
else:
return None
# Algorithm 15, CoeffFromHalfByte(b)
def coeff_from_half_byte(self, b):
if self.eta == 2 and b < 15:
return 2 - (b % 5)
elif self.eta == 4 and b < 9:
return 4 - b
else:
return None
# Algorithm 16, SimpleBitPack(w, b)
def simple_bit_pack(self, w, b):
z = bytearray(0)
bitlen_b = int(b).bit_length()
for i in range(256):
z += self.integer_to_bits(w[i], bitlen_b)
return self.bits_to_bytes(z)
# Algorithm 17, BitPack(w, a, b)
def bit_pack(self, w, a, b):
c = int(a + b).bit_length()
z = bytearray(0)
for wi in w:
z += self.integer_to_bits(b - wi, c)
return self.bits_to_bytes(z)
# Algorithm 18, SimpleBitUnpack(v, b)
def simple_bit_unpack(self, v, b):
c = int(b).bit_length()
z = self.bytes_to_bits(v)
w = [None]*256
for i in range(256):
w[i] = self.bits_to_integer(z[i*c : (i+1)*c ], c)
return w
# Algorithm 19, BitUnpack(v, a, b)
def bit_unpack(self, v, a, b):
c = int(a + b).bit_length()
z = self.bytes_to_bits(v)
w = []
for i in range(256):
w += [ b - self.bits_to_integer(z[i*c:(i+1)*c], c) ]
return w
# Algorithm 20, HintBitPack(h)
def hint_bit_pack(self, h):
idx = 0
y = bytearray(self.omega + self.k)
for i in range(self.k):
for j in range(256):
if h[i][j] != 0:
y[idx] = j
idx += 1
y[self.omega + i] = idx
return y
# Algorithm 21, HintBitPack(h)
def hint_bit_unpack(self, y):
idx = 0
h = [ [0]*256 for _ in range(self.k) ]
for i in range(self.k):
if y[self.omega + i] < idx or y[self.omega + i] > self.omega:
return None
first = idx
while idx < y[self.omega + i]:
if idx > first:
if y[idx - 1] >= y[idx]:
return None
h[i][y[idx]] = 1
idx += 1
for i in range(idx, self.omega):
if y[i] != 0:
return None
return h
# Algorithm 22, pkEncode(rho, t1)
def pk_encode(self, rho, t1):
pk = rho
b = 2**(int(self.q-1).bit_length() - self.d) - 1
for t1i in t1:
pk += self.simple_bit_pack(t1i, b)
return pk
# Algorithm 23, pkDecode(pk)
def pk_decode(self, pk):
rho = pk[0:32]
bitlen_b = int(self.q - 1).bit_length() - self.d
b = 2 ** bitlen_b - 1
t1 = []
for i in range(self.k):
zi = pk[32 + 32*bitlen_b*i: 32 + 32*bitlen_b*(i + 1)]
t1 += [ self.simple_bit_unpack(zi, b) ]
return (rho, t1)
# Algorithm 24, skEncode(rho, K, tr, s1, s2, t0)
def sk_encode(self, rho, kk, tr, s1, s2, t0):
sk = rho + kk + tr
for s1i in s1:
sk += self.bit_pack(s1i, self.eta, self.eta)
for s2i in s2:
sk += self.bit_pack(s2i, self.eta, self.eta)
for t0i in t0:
sk += self.bit_pack(t0i, 2**(self.d-1)-1, 2**(self.d-1))
return sk
# Algorithm 25, skDecode(sk)
def sk_decode(self, sk):
rho = sk[0:32]
kk = sk[32:64]
tr = sk[64:128]
pt = 128
le = 32*int(2*self.eta).bit_length()
s1 = []
for i in range(self.ell):
yi = sk[pt : pt + le]
pt += le
s1 += [ self.bit_unpack(yi, self.eta, self.eta) ]
s2 = []
for i in range(self.k):
zi = sk[pt : pt + le]
pt += le
s2 += [ self.bit_unpack(zi, self.eta, self.eta) ]
ld = 32*self.d
t0 = []
for i in range(self.k):
wi = sk[pt : pt + ld]
pt += ld
t0 += [ self.bit_unpack(wi, 2**(self.d-1) - 1, 2**(self.d-1)) ]
return (rho, kk, tr, s1, s2, t0)
# Algorithm 26, sigEncode(c~, z, h)
def sig_encode(self, ct, z, h):
sig = ct
for i in range(self.ell):
sig += self.bit_pack(z[i], self.gam1 - 1, self.gam1)
sig += self.hint_bit_pack(h)
return sig
# Algorithm 27, sigDecode(sig)
def sig_decode(self, sig):
bl = 32*(1 + int(self.gam1-1).bit_length())
cl = self.lam // 4
ct = sig[0 : cl]
z = []
for i in range(self.ell):
xi = sig[cl + bl*i : cl + bl*(i+1)]
z += [ self.bit_unpack(xi, self.gam1 - 1, self.gam1) ]
y = sig[cl + bl*self.ell : cl + bl*self.ell + self.omega + self.k]
h = self.hint_bit_unpack(y)
return (ct, z, h)
# Algorithm 28, w1Encode(w1)
def w1_encode(self, w1):
w1t = b''
b = (self.q - 1) // (2*self.gam2) - 1
for w1i in w1:
w1t += self.simple_bit_pack(w1i, b)
return w1t
# Algorithm 29, SampleInBall(rho)
def sample_in_ball(self, rho):
c = [0]*256
xof = SHAKE256.new(rho)
s = xof.read(8)
h = self.bytes_to_bits(s)
for i in range(256-self.tau, 256):
j = xof.read(1)[0]
while j > i:
j = xof.read(1)[0]
c[i] = c[j]
c[j] = (-1)**h[i + self.tau - 256]
return c
# Algorithm 30, RejNTTPoly(rho):
def rej_ntt_poly(self, rho):
j = 0
#print('self.rej_ntt_poly', len(rho), rho.hex())
g = SHAKE128.new(rho)
a = [None]*256
while j < 256:
s = g.read(3)
a[j] = self.coeff_from_three_bytes(s[0], s[1], s[2])
if a[j] != None:
j += 1
return a
# Algorithm 31, RejBoundedPoly(rho)
def rej_bounded_poly(self, rho):
j = 0
h = SHAKE256.new(rho)
a = [None]*256
while j < 256:
z = h.read(1)[0]
z0 = self.coeff_from_half_byte(z % 16)
z1 = self.coeff_from_half_byte(z // 16)
if z0 != None:
a[j] = z0
j += 1
if z1 != None and j < 256:
a[j] = z1
j += 1
return a
# Algorithm 32, ExpandA(rho)
def expand_a(self, rho):
a = [ [None]*self.ell for _ in range(self.k) ]
for r in range(self.k):
for s in range(self.ell):
rhop = rho + self.integer_to_bytes(s, 1) + self.integer_to_bytes(r, 1)
a[r][s] = self.rej_ntt_poly(rhop)
return a
# Algorithm 33, ExpandS(rho)
def expand_s(self, rho):
s1 = []
for r in range(self.ell):
s1 += [ self.rej_bounded_poly(rho +
self.integer_to_bytes(r, 2)) ]
s2 = []
for r in range(self.k):
s2 += [ self.rej_bounded_poly(rho +
self.integer_to_bytes(r + self.ell, 2)) ]
return (s1, s2)
# Algorithm 34, ExpandMask(rho, mu)
def expand_mask(self, rho, mu):
c = 1 + int(self.gam1 - 1).bit_length()
y = []
for r in range(self.ell):
rhop = rho + self.integer_to_bytes(mu + r, 2)
v = self.h(rhop, 32*c)
y += [ self.bit_unpack(v, self.gam1 - 1, self.gam1) ]
return y
"""2.3 Mathematical Symbols:
If alpha is a positive integer and m in Z or m in Z_alpha, then
m mod^{+-} alpha denotes the unique element m' in Z in the
range -ceil(alpha/2) < m' <= floor(alpha/2) such that m and m' are
congruent modulo alpha.
NOTE: This is *not* two's complement sign extension as it includes
+alpha/2 and excludes -alpha/2. Hence the negations here.
"""
def modpm(self, m, alpha):
return -((alpha // 2 - m) % alpha) + (alpha // 2)
def inf_norm(self, x):
if type(x) == list:
y = 0
for xi in x:
y = max(y, self.inf_norm(xi))
return y
else:
return abs(self.modpm(x, self.q))
# Algorithm 35, Power2Round(r)
# "PowerTwoRound is applied componentwise."
def power2round(self, r):
r0vv = []
r1vv = []
for rr in r:
r0v = []
r1v = []
for rx in rr:
rp = rx % self.q
r0 = self.modpm(rp, 1 << self.d)
r1 = (rp - r0) >> self.d
r0v += [ r0 ]
r1v += [ r1 ]
r0vv += [ r0v ]
r1vv += [ r1v ]
return r1vv, r0vv
# Algorithm 36, Decompose(r)
def decompose(self, r):
rp = r % self.q
r0 = self.modpm(rp, 2*self.gam2)
if rp - r0 == self.q - 1:
r1 = 0
r0 -= 1
else:
r1 = (rp - r0) // (2*self.gam2)
return (r1, r0)
# Algorithm 37, HighBits(r)
def high_bits(self, r):
r1vv = []
for rr in r:
r1v = []
for rx in rr:
(r1, r0) = self.decompose(rx)
r1v += [ r1 ]
r1vv += [ r1v ]
return r1vv
# Algorithm 38, LowBits(r)
def low_bits(self, r):
r0vv = []
for rr in r:
r0v = []
for rx in rr:
(r1, r0) = self.decompose(rx)
r0v += [ r0 ]
r0vv += [ r0v ]
return r0vv
# Algorithm 39, MakeHint(z, r)
def make_hint(self, z, r):
r1 = self.high_bits(r)
v1 = self.high_bits(self.add(r, z))
return self.neq(r1, v1)
# Algorithm 40, UseHint(h, r)
def use_hint(self, h, r):
if type(h[0]) == list:
return [ self.use_hint(h[i], r[i]) for i in range(len(h)) ]
m = (self.q - 1) // (2*self.gam2)
r1v = []
for i in range(256):
(r1, r0) = self.decompose(r[i])
if h[i] == 1 and r0 > 0:
r1 = (r1 + 1) % m
if h[i] == 1 and r0 <= 0:
r1 = (r1 - 1) % m
r1v += [ r1 ]
return r1v
# Algorithm 41, NTT(w)
def ntt(self, w):
w = w.copy()
m = 0
le = 128
while le >= 1:
st = 0
while st < 256:
m += 1
z = ML_DSA_ZETAS[m]
for j in range(st, st + le):
t = (z*w[j + le]) % self.q
w[j + le] = (w[j] - t) % self.q
w[j] = (w[j] + t) % self.q
st = st + 2*le
le = le // 2
return w
# Algorithm 42, NTT^-1(w)
def ntt_inverse(self, w):
w = w.copy()
m = 256
le = 1
while le < 256:
st = 0
while st < 256:
m -= 1
z = -ML_DSA_ZETAS[m]
for j in range(st, st + le):
t = w[j]
w[j] = (t + w[j + le]) % self.q
w[j + le] = (t - w[j + le]) % self.q
w[j + le] = (z*w[j + le]) % self.q
st = st + 2*le
le = 2*le
f = 8347681
w = [ (f*w[j]) % self.q for j in range(256) ]
return w
# Algorithm 43, BitRev8(m)
def bitrev8(self, m):
b = self.integer_to_bits(m, 8)
brev = [ b[7 - i] for i in range(8) ]
r = self.bits_to_integer(brev, 8)
return r
# Algorithm 44, AddNTT(a, b)
def add(self, a, b):
if type(a) == list:
return [ self.add(a[i], b[i]) for i in range(len(a)) ]
else:
return (a + b) % self.q
# negation
def neg(self, a):
if type(a) == list:
return [ self.neg(a[i]) for i in range(len(a)) ]
else:
return (-a) % self.q
# subtraction
def sub(self, a, b):
if type(a) == list:
return [ self.sub(a[i], b[i]) for i in range(len(a)) ]
else:
return (a - b) % self.q
# not equivalent
def neq(self, a, b):
if type(a) == list:
return [ self.neq(a[i], b[i]) for i in range(len(a)) ]
elif a == b:
return 0
else:
return 1
# weigth (number of nonzero entries)
def weight(self, a):
if type(a) == list:
w = 0
for ai in a:
w += self.weight(ai)
return w
elif a == 0:
return 0
else:
return 1
# Algorithm 45, MulNTT(a, b)
def mul_ntt(self, a, b):
return [ (a[i]*b[i]) % self.q for i in range(256) ]
# Algorithm 48, MatrixVectorNTT(M^, v^)
def matrix_vector_ntt(self, m, v):
w = [ [0]*256 for _ in range(self.k) ]
for i in range(self.k):
for j in range(self.ell):
w[i] = self.add(w[i], self.mul_ntt(m[i][j], v[j]))
return w
# run the test on these function
if __name__ == '__main__':
ml_dsa = ML_DSA()
test_mldsa( ml_dsa.keygen_internal,
ml_dsa.sign_internal,
ml_dsa.verify_internal,
'(fips204.py)')