-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathalexnet_modified.py
77 lines (63 loc) · 2.73 KB
/
alexnet_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# import the necessary packages
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dense
from keras.layers.core import Dropout
from keras import backend as K
class networkArchFonc:
@staticmethod
def build(width, height, depth, classes):
# initialize the model
model = Sequential()
inputShape = (height, width, depth)
# if we are using "channels first", update the input shape
if K.image_data_format() == "channels_first":
inputShape = (depth, height, width)
# 1st Convolutional Layer
model.add(Conv2D(filters=96, input_shape=inputShape, kernel_size=(11, 11), strides=(4, 4), padding='valid'))
model.add(Activation('relu'))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
# 2nd Convolutional Layer
model.add(Conv2D(filters=96, kernel_size=(11, 11), strides=(1, 1), padding='valid'))
model.add(Activation('relu'))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
# 3rd Convolutional Layer
model.add(Conv2D(filters=96, kernel_size=(3, 3), strides=(1, 1), padding='valid'))
model.add(Activation('relu'))
# 4th Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), padding='valid'))
model.add(Activation('relu'))
model.add(Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), padding='valid'))
model.add(Activation('relu'))
# 5th Convolutional Layer
model.add(Conv2D(filters=128, kernel_size=(3, 3), strides=(1, 1), padding='valid'))
model.add(Activation('relu'))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
# Passing it to a Fully Connected layer
model.add(Flatten())
# 1st Fully Connected Layer
model.add(Dense(4096, input_shape=inputShape))
model.add(Activation('relu'))
# Add Dropout to prevent overfitting
model.add(Dropout(0.4))
# 2nd Fully Connected Layer
model.add(Dense(4096))
model.add(Activation('relu'))
# Add Dropout
model.add(Dropout(0.4))
# 3rd Fully Connected Layer
model.add(Dense(1000))
model.add(Activation('relu'))
# Add Dropout
model.add(Dropout(0.4))
# Output Layer
model.add(Dense(classes))
model.add(Activation('softmax'))
# return the constructed network architecture
return model