-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
644 lines (540 loc) · 23.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
"""
Main training entry point for pre-training and downstream fine-tuning.
"""
import os
import json
import random
import time
from functools import wraps
from typing import Callable, List, Sequence
import fsspec
import hydra
import pytorch_lightning as pl
import torch
import wandb
from omegaconf import OmegaConf
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.utilities import rank_zero_only, rank_zero_warn
import src
import src.models.nn.utils as U
import src.utils as utils
from src.dataloaders import SequenceDataset
from src.tasks import decoders, encoders, tasks
from src.utils import registry
from src.utils.optim_groups import add_optimizer_hooks
# Enable TensorFloat32 for speed optimization
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Register OmegaConf resolvers
OmegaConf.register_new_resolver("eval", eval)
OmegaConf.register_new_resolver("div_up", lambda x, y: (x + y - 1) // y)
OmegaConf.register_new_resolver("min", lambda x, y: min([x, y]))
log = src.utils.train.get_logger(__name__)
class DummyExperiment:
"""Dummy experiment to handle logging when not in rank zero."""
def nop(self, *args, **kwargs):
pass
def __getattr__(self, _):
return self.nop
def __getitem__(self, idx) -> "DummyExperiment":
return self
def __setitem__(self, *args, **kwargs) -> None:
pass
def rank_zero_experiment(fn: Callable) -> Callable:
"""Decorator to return the real experiment on rank 0 and DummyExperiment otherwise."""
@wraps(fn)
def experiment(self):
@rank_zero_only
def get_experiment():
return fn(self)
return get_experiment() or DummyExperiment()
return experiment
class CustomWandbLogger(WandbLogger):
def __init__(self, *args, **kwargs):
"""Modified logger that retries on failure and handles rank zero logging."""
super().__init__(*args, **kwargs)
@property
@rank_zero_experiment
def experiment(self):
if self._experiment is None:
if self._offline:
os.environ["WANDB_MODE"] = "dryrun"
attach_id = getattr(self, "_attach_id", None)
if wandb.run is not None:
rank_zero_warn(
"A wandb run is already in progress; new instances will reuse this run. "
"Call `wandb.finish()` before instantiating `WandbLogger` if this is not desired."
)
self._experiment = wandb.run
elif attach_id is not None and hasattr(wandb, "_attach"):
self._experiment = wandb._attach(attach_id)
else:
while True:
try:
self._experiment = wandb.init(**self._wandb_init)
break
except Exception as e:
log.error("wandb Exception:\n", e)
t = random.randint(30, 60)
log.warning(f"Sleeping for {t} seconds")
time.sleep(t)
# Define default x-axis
if getattr(self._experiment, "define_metric", None):
self._experiment.define_metric("trainer/global_step")
self._experiment.define_metric(
"*", step_metric="trainer/global_step", step_sync=True
)
return self._experiment
class SequenceLightningModule(pl.LightningModule):
def __init__(self, config):
# Disable profiling executor to reduce memory and increase speed
try:
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
except AttributeError:
pass
super().__init__()
# Save hyperparameters
self.save_hyperparameters(config, logger=False)
# Dataset initialization
self.dataset = SequenceDataset.registry[self.hparams.dataset._name_](
**self.hparams.dataset
)
# Check configuration
self._check_config()
# Flags
self._has_setup = False
self._state = None
self.val_loader_names = None
self.test_loader_names = None
# Initialize components
self.encoder = None
self.decoder = None
self.model = None
self.task = None
self.loss = None
self.loss_val = None
self.metrics = None
self.setup(in_init=True)
def setup(self, stage=None, in_init=False):
if not self.hparams.train.disable_dataset:
self.dataset.setup()
if not in_init:
current_device = int(
os.environ.get("LOCAL_RANK", os.environ.get("SLURM_LOCALID", 0))
)
torch.cuda.set_device(f"cuda:{current_device}")
if self._has_setup:
return
else:
self._has_setup = True
# Combine encoders and decoders from model and task configurations
encoder_cfg = utils.to_list(self.hparams.encoder) + utils.to_list(
self.hparams.model.pop("encoder", None)
)
decoder_cfg = utils.to_list(
self.hparams.model.pop("decoder", None)
) + utils.to_list(self.hparams.decoder)
# Instantiate model
config_path = self.hparams.model.pop("config_path", None)
if config_path is not None:
with open(config_path) as f:
model_config_from_file = json.load(f)
self.hparams.model.update(model_config_from_file)
# Check if dropout_layer_norm is compiled
try:
from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
if self.hparams.model.get("fused_dropout_add_ln", None) is not None:
self.hparams.model.update({"fused_dropout_add_ln": False})
# Handle special cases for certain models
model_name = self.hparams.model.get("_name_", "")
if "caduceus" in model_name or "xlstm" in model_name:
OmegaConf.update(
self.hparams.model.config,
"complement_map",
self.dataset.tokenizer.complement_map,
force_add=True,
)
# Instantiate model configuration
if (
config_target := self.hparams.model.get("config", None)
) and config_target.get("_target_", None):
model_hparams = OmegaConf.to_container(self.hparams.model, resolve=True)
model_hparams["config"] = hydra.utils.instantiate(model_hparams["config"])
self.model = utils.instantiate(registry.model, model_hparams)
else:
self.model = utils.instantiate(registry.model, self.hparams.model)
# Post-initialization hook
if (hook_name := self.hparams.train.post_init_hook.get("_name_")) is not None:
kwargs = self.hparams.train.post_init_hook.copy()
del kwargs["_name_"]
for module in self.modules():
if hasattr(module, hook_name):
getattr(module, hook_name)(**kwargs)
if self.hparams.train.get("compile_model", False):
self.model = torch.compile(self.model, dynamic=False)
# Instantiate task
self.task = utils.instantiate(
tasks.registry, self.hparams.task, dataset=self.dataset, model=self.model
)
# Create encoders and decoders
encoder = encoders.instantiate(
encoder_cfg, dataset=self.dataset, model=self.model
)
decoder = decoders.instantiate(
decoder_cfg, model=self.model, dataset=self.dataset
)
# Combine encoders and decoders
self.encoder = U.PassthroughSequential(self.task.encoder, encoder)
self.decoder = U.PassthroughSequential(decoder, self.task.decoder)
self.loss = self.task.loss
self.loss_val = getattr(self.task, "loss_val", self.task.loss)
self.metrics = self.task.metrics
def load_state_dict(self, state_dict, strict=False):
if self.hparams.train.pretrained_model_state_hook.get("_name_") is not None:
model_state_hook = utils.instantiate(
registry.model_state_hook,
self.hparams.train.pretrained_model_state_hook.copy(),
partial=True,
)
state_dict = model_state_hook(self.model, state_dict)
log.info("Custom load_state_dict function is running.")
return super().load_state_dict(state_dict, strict=strict)
def _check_config(self):
state_mode = self.hparams.train.state.mode
assert state_mode in [None, "none", "null", "reset", "bptt", "tbptt"]
n_context = self.hparams.train.state.n_context
n_context_eval = self.hparams.train.state.n_context_eval
assert n_context is None or (isinstance(n_context, int) and n_context >= 0)
assert n_context_eval is None or (
isinstance(n_context_eval, int) and n_context_eval >= 0
)
def _initialize_state(self):
"""Called at model setup and start of epoch to completely reset state"""
self._state = None
self._memory_chunks = []
def _reset_state(self, batch, device=None):
"""Called to construct default_state when necessary, e.g. during BPTT"""
device = device or batch[0].device
self._state = self.model.default_state(*batch[0].shape[:1], device=device)
def _detach_state(self, state):
if isinstance(state, torch.Tensor):
return state.detach()
elif isinstance(state, (tuple, list)):
return type(state)(self._detach_state(s) for s in state)
elif isinstance(state, dict):
return {k: self._detach_state(v) for k, v in state.items()}
elif state is None:
return None
else:
raise NotImplementedError
def _process_state(self, batch, batch_idx, training=True):
"""Handle state context logic."""
key = "n_context" if training else "n_context_eval"
n_context = self.hparams.train.state.get(key)
if n_context == 0 and self.hparams.train.state.mode not in ["tbptt"]:
self._initialize_state()
return
if self.hparams.train.state.mode == "reset":
if batch_idx % (n_context + 1) == 0:
self._reset_state(batch)
elif self.hparams.train.state.mode == "bptt":
self._reset_state(batch)
with torch.no_grad():
for _batch in self._memory_chunks:
self.forward(_batch)
self._memory_chunks.append(batch)
self._memory_chunks = self._memory_chunks[-n_context:]
elif self.hparams.train.state.mode == "tbptt":
_, _, z = batch
reset = z["reset"]
if reset:
self._reset_state(batch)
else:
self._state = self._detach_state(self._state)
def forward(self, batch):
return self.task.forward(
batch, self.encoder, self.model, self.decoder, self._state
)
def step(self, x_t):
x_t, *_ = self.encoder(x_t)
x_t, state = self.model.step(x_t, state=self._state)
self._state = state
x_t, *_ = self.decoder.step(x_t, state=state)
return x_t
def _shared_step(self, batch, batch_idx, prefix="train"):
self._process_state(batch, batch_idx, training=(prefix == "train"))
x, y, w = self.forward(batch)
# Compute loss
loss_fn = self.loss if prefix == "train" else self.loss_val
loss = loss_fn(x, y, **w)
# handle rare exception where all entries in batch are pad tokens
pad_token_idx = 4
valid_mask = y.squeeze(-1) != pad_token_idx
loss = loss[valid_mask] # loss is unreduced cross entropy loss
if loss.numel() == 0:
# No valid loss entries, set loss to zero, metrics will not be logged for this step
loss = torch.tensor(0.0, device=loss.device, requires_grad=True)
metrics = {}
else:
# Metrics
loss = loss.mean() # Compute mean loss over valid entries
metrics = self.metrics(x, y, **w)
metrics["loss"] = loss
metrics = {f"{prefix}/{k}": v for k, v in metrics.items()}
log_on_step = (
"eval" in self.hparams
and self.hparams.eval.get("log_on_step", False)
and prefix == "train"
)
self.log_dict(
metrics,
on_step=log_on_step,
on_epoch=True,
prog_bar=True,
add_dataloader_idx=False,
sync_dist=True,
)
return loss
def forward(self, batch):
return self.task.forward(
batch, self.encoder, self.model, self.decoder, self._state
)
def training_step(self, batch, batch_idx):
loss = self._shared_step(batch, batch_idx, prefix="train")
# Log loss and epoch
loss_epoch = {"trainer/loss": loss, "trainer/epoch": float(self.current_epoch)}
self.log_dict(
loss_epoch,
on_step=True,
on_epoch=False,
prog_bar=False,
add_dataloader_idx=False,
sync_dist=True,
)
return loss
def validation_step(self, batch, batch_idx, dataloader_idx=0):
ema = (
self.val_loader_names[dataloader_idx].endswith("/ema")
and self.optimizers().optimizer.stepped
)
if ema:
self.optimizers().swap_ema()
loss = self._shared_step(
batch, batch_idx, prefix=self.val_loader_names[dataloader_idx]
)
if ema:
self.optimizers().swap_ema()
return loss
def test_step(self, batch, batch_idx, dataloader_idx=0):
return self._shared_step(
batch, batch_idx, prefix=self.test_loader_names[dataloader_idx]
)
def configure_optimizers(self):
# Set zero weight decay for some params
if "optimizer_param_grouping" in self.hparams.train:
add_optimizer_hooks(
self.model, **self.hparams.train.optimizer_param_grouping
)
# Normal parameters
all_params = list(self.parameters())
params = [p for p in all_params if not hasattr(p, "_optim")]
optimizer = utils.instantiate(
registry.optimizer, self.hparams.optimizer, params
)
del self.hparams.optimizer._name_
# Add parameters with special hyperparameters
hps = [getattr(p, "_optim") for p in all_params if hasattr(p, "_optim")]
hps = [
dict(s) for s in sorted(set(frozenset(hp.items()) for hp in hps))
] # Unique dicts
for hp in hps:
params = [p for p in all_params if getattr(p, "_optim", None) == hp]
optimizer.add_param_group(
{"params": params, **self.hparams.optimizer, **hp}
)
# Layer Decay
if self.hparams.train.layer_decay.get("_name_") is not None:
get_num_layer = utils.instantiate(
registry.layer_decay,
self.hparams.train.layer_decay["_name_"],
partial=True,
)
# Group parameters by layer
layer_wise_groups = {}
num_max_layers = 0
for name, p in self.named_parameters():
layer_id = get_num_layer(name)
if layer_id not in layer_wise_groups:
layer_wise_groups[layer_id] = {
"params": [],
"lr": None,
"weight_decay": self.hparams.optimizer.weight_decay,
}
layer_wise_groups[layer_id]["params"].append(p)
num_max_layers = max(num_max_layers, layer_id)
# Update learning rates for each layer
for layer_id, group in layer_wise_groups.items():
group["lr"] = self.hparams.optimizer.lr * (
self.hparams.train.layer_decay.decay ** (num_max_layers - layer_id)
)
# Reset optimizer parameter groups
optimizer.param_groups = []
for group in layer_wise_groups.values():
optimizer.add_param_group(group)
# Log optimizer info for debugging
keys = set(k for hp in hps for k in hp.keys())
utils.train.log_optimizer(log, optimizer, keys)
# Configure scheduler
if "scheduler" not in self.hparams:
return optimizer
lr_scheduler = utils.instantiate(
registry.scheduler, self.hparams.scheduler, optimizer
)
scheduler = {
"scheduler": lr_scheduler,
"interval": self.hparams.train.interval,
"monitor": self.hparams.train.monitor,
"name": "trainer/lr",
}
return [optimizer], [scheduler]
def train_dataloader(self):
log.info("Creating train loader")
return self.dataset.train_dataloader(**self.hparams.loader)
def _eval_dataloaders_names(self, loaders, prefix):
"""Process loaders into a list of names and loaders."""
if utils.is_dict(loaders):
return [
f"{prefix}/{k}" if k is not None else prefix for k in loaders.keys()
], list(loaders.values())
elif utils.is_list(loaders):
return [f"{prefix}/{i}" for i in range(len(loaders))], loaders
else:
return [prefix], [loaders]
def _eval_dataloaders(self):
"""Return all validation and test loaders."""
val_loaders = self.dataset.val_dataloader(**self.hparams.loader)
test_loaders = self.dataset.test_dataloader(**self.hparams.loader)
val_loader_names, val_loaders = self._eval_dataloaders_names(val_loaders, "val")
test_loader_names, test_loaders = self._eval_dataloaders_names(
test_loaders, "test"
)
# Duplicate datasets for EMA
if self.hparams.train.ema > 0.0:
val_loader_names += [name + "/ema" for name in val_loader_names]
val_loaders += val_loaders
test_loader_names += [name + "/ema" for name in test_loader_names]
test_loaders += test_loaders
# Optionally remove loaders
eval_loader_names = []
eval_loaders = []
if not self.hparams.train.get("remove_val_loader_in_eval", False):
eval_loader_names += val_loader_names
eval_loaders += val_loaders
if not self.hparams.train.get("remove_test_loader_in_eval", False):
eval_loader_names += test_loader_names
eval_loaders += test_loaders
return eval_loader_names, eval_loaders
def val_dataloader(self):
self.val_loader_names, val_loaders = self._eval_dataloaders()
log.info("Creating validation loaders")
log.info(self.val_loader_names)
return val_loaders
def test_dataloader(self):
self.test_loader_names, test_loaders = self._eval_dataloaders()
self.test_loader_names = ["final/" + name for name in self.test_loader_names]
log.info("Creating test loaders")
log.info(self.test_loader_names)
return test_loaders
def create_trainer(config, **kwargs):
callbacks: List[pl.Callback] = []
logger = None
# WandB Logging
if config.get("wandb") is not None:
logger = CustomWandbLogger(
config=utils.to_dict(config, recursive=True),
settings=wandb.Settings(start_method="fork"),
**config.wandb,
)
# Lightning callbacks
if "callbacks" in config:
for _name_, callback in config.callbacks.items():
if config.get("wandb") is None and _name_ in ["learning_rate_monitor"]:
continue
log.info(f"Instantiating callback <{registry.callbacks[_name_]}>")
callback._name_ = _name_
callbacks.append(utils.instantiate(registry.callbacks, callback))
# Progressive Resizing callback
if config.callbacks.get("progressive_resizing", None) is not None:
num_stages = len(config.callbacks.progressive_resizing.stage_params)
log.info(f"Progressive Resizing: {num_stages} stages")
for i, e in enumerate(config.callbacks.progressive_resizing.stage_params):
log.info(f"\tStage {i}: {e['resolution']} @ {e['epochs']} epochs")
# Configure DDP automatically
n_devices = config.trainer.get("devices", 1)
if isinstance(n_devices, Sequence):
n_devices = len(n_devices)
if n_devices > 1 and config.trainer.get("strategy", None) is None:
config.trainer.strategy = dict(
_target_="pytorch_lightning.strategies.DDPStrategy",
find_unused_parameters=False,
gradient_as_bucket_view=True,
)
# Instantiate trainer
log.info(f"Instantiating trainer <{config.trainer._target_}>")
trainer = hydra.utils.instantiate(
config.trainer, callbacks=callbacks, logger=logger
)
return trainer
def fsspec_exists(filename):
fs, _ = fsspec.core.url_to_fs(filename)
return fs.exists(filename)
def train(config):
if config.train.seed is not None:
pl.seed_everything(config.train.seed, workers=True)
trainer = create_trainer(config)
model = SequenceLightningModule(config)
# Load pretrained model if specified
if config.train.get("pretrained_model_path", None) is not None:
model = SequenceLightningModule.load_from_checkpoint(
config.train.pretrained_model_path,
config=config,
strict=config.train.pretrained_model_strict_load,
)
# Initial validation
if config.train.validate_at_start:
log.info("Running validation before training")
trainer.validate(model)
log.info(f"{config.train.ckpt=} {fsspec_exists(config.train.ckpt)=}")
if config.train.ckpt is not None and fsspec_exists(config.train.ckpt):
trainer.fit(model, ckpt_path=config.train.ckpt)
else:
trainer.fit(model)
if config.train.test:
if config.train.get("cross_validation", False): # First, load the best validation model
best_val_ckpt = os.path.join(
model.hparams.callbacks.model_checkpoint.dirpath,
f"{model.hparams.callbacks.model_checkpoint.filename}.ckpt",
)
# Update config so we do not load just the backbone
config.train.pretrained_model_state_hook.update({"_name_": None})
# Remove validation loader
config.train.update({"remove_val_loader_in_eval": True})
config.train.update({"remove_test_loader_in_eval": False})
ckpt = torch.load(best_val_ckpt)
log.info(f"Loaded best validation checkpoint from epoch {ckpt['epoch']}")
log.info("Testing approaching ...")
trainer.validate(model, ckpt_path=best_val_ckpt)
else:
trainer.validate(model)
log.info("Testing approaching ...")
@hydra.main(config_path="configs", config_name="config.yaml")
def main(config: OmegaConf):
# Process config
config = utils.train.process_config(config)
# Pretty print config
utils.train.print_config(config, resolve=True)
train(config)
if __name__ == "__main__":
main()