Skip to content

Latest commit

 

History

History
253 lines (208 loc) · 15.7 KB

README.md

File metadata and controls

253 lines (208 loc) · 15.7 KB

A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks

arXiv License: MIT

Thomas Schmied1, Thomas Adler1, Vihang Patil1, Maximilian Beck1, 2, Korbinian Pöppel1, 2, Johannes Brandstetter1, 2, Günter Klambauer1,2, Razvan Pascanu3,4, Sepp Hochreiter1,2

1ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, JKU Linz, Austria
2NXAI, 3Google DeepMind, 4UCL

This repository contains the source code for " A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks". The paper is available on ArXiv.

large Recurrent Action Model

Overview

This code-based is built on L2M and RA-DT and relies on open-source frameworks, including:

What is in this repository?

.
├── configs                    # Contains all .yaml config files for Hydra to configure agents, envs, etc.
│   ├── agent_params            
│   ├── wandb_callback_params
│   ├── env_params
│   ├── eval_params
│   ├── run_params
│   └── config.yaml            # Main config file for Hydra - specifies log/data/model directories.
├── continual_world            # Submodule for Continual-World.
├── dmc2gym_custom             # Custom wrapper for DMControl.
├── figures             
├── src                        # Main source directory.
│   ├── algos                  # Contains agent/model/prompt classes.
│   ├── augmentations          # Image augmentations.
│   ├── buffers                # Contains replay trajectory buffers.
│   ├── callbacks              # Contains callbacks for training (e.g., WandB, evaluation, etc.).
│   ├── data                   # Contains data utilities.
│   ├── envs                   # Contains functionality for creating environments.
│   ├── optimizers             # Contains optimizers.
│   ├── schedulers             # Contains learning rate schedulers.
│   ├── tokenizers_custom      # Contains custom tokenizers for discretizing states/actions.
│   ├── utils                  
│   └── __init__.py
├── LICENSE
├── README.md
├── environment.yaml
├── requirements.txt
├── evaluate.py                # Entry point for evaluating agents.
└── main.py                    # Entry point for training agents.

Installation

Environment configuration and dependencies are available in environment.yaml and requirements.txt.

Create the conda environment:

conda env create -f environment.yaml
conda activate lram

Install the remaining requirements (with MuJoCo already downloaded, if not see here):

pip install -r requirements.txt

Init the continualworld submodule, install metaworld:

git submodule init
git submodule update
cd continual_world
pip install .
pip install git+https://github.com/rlworkgroup/metaworld.git@18118a28c06893da0f363786696cc792457b062b

Install custom version of dmc2gym:

cd dmc2gym_custom
pip install -e .

To install composuite we refer to src/data/composuite/README.md.

To install mimicgen we refer to src/data/mimicgen/README.md.

For ICL experiments on Dark-Room minihack is required. We refer to RA-DT for instructions.

xLSTM & Mamba dependencies

We rely on the official implementations of xLSTM and Mamba and maintain separate conda environments to avoid dependency conflicts.

Install xLSTM using:

pip install xlstm 

Install Mamba using:

pip install mamba_ssm==2.1.0
pip install causal-conv1d==1.3.0.post1

MuJoCo installation

For the installation of MuJoCo and tips on troubleshooting, we refer to the L2M repository: https://github.com/ml-jku/L2M

Setup

Experiment configuration

This codebase relies on Hydra, which configures experiments via .yaml files. Hydra automatically creates the log folder structure for a given run, as specified in the respective config.yaml file.

The config.yaml is the main configuration entry point and contains the default parameters. The file references the respective default parameter files under the block defaults. In addition, config.yaml contains 4 constants that configure the directory paths:

LOG_DIR: ./logs
DATA_DIR: ./data
SSD_DATA_DIR: ./data
MODELS_DIR: ./models

Datasets

For our experiments we use the datasets for the following environments:

Our datasets for Meta-World and DMControl are available on Huggingface Hub 🤗, and can be downloaded using the huggingface-cli:

# dm_control 10M
huggingface-cli download ml-jku/dm_control_10M --local-dir=./dm_control_10M --repo-type dataset
# meta_world 2M
huggingface-cli download ml-jku/meta-world --local-dir=./meta-world --repo-type dataset

To extract the downloaded .tar.gz files, use untar_files.sh:

bash untar_files.sh SRC DST

For the 20M Procgen datasets, we refer to RA-DT.

Multi-GPU training

For multi-GPU training, we use torchrun, as documented in L2M. A launcher plugin hydra_torchrun_launcher exists for hydra.

To enable the plugin, clone the hydra repo, cd to contrib/hydra_torchrun_launcher, and pip install the plugin:

git clone https://github.com/facebookresearch/hydra.git
cd hydra/contrib/hydra_torchrun_launcher
pip install -e .

The plugin can be used from the commandline:

python main.py -m hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 [...]

Running experiments on a local cluster on a single node can be done via CUDA_VISIBLE_DEVICES to specify the GPUs to use:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py -m hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 [...]

On Slurm, executing torchrun on a single node works alike. E.g., to run on 4 GPUs on a single node:

#!/bin/bash
#SBATCH --account=X
#SBATCH --qos=X
#SBATCH --partition=X
#SBATCH --nodes=1
#SBATCH --gpus=4
#SBATCH --cpus-per-task=32

source activate lram
python main.py -m hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 [...]

For multi-node training we refer to the documentation in L2M

Running experiments

In the following, we provide examples of how to run the experiments in the paper. We conducted all our experiments on a server equipped with 4 A100s and use DistributedDataParallel functionalities provided by PyTorch.

To train 16M models, run:

# xLSTM [1:0] 
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=16M_xlstm_m_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDXLSTM run_params=pretrain eval_params=pretrain agent_params/huggingface=xlstm_medium agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# xLSTM [7:1]
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=16M_xlstm_ms_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDXLSTM run_params=pretrain eval_params=pretrain agent_params/huggingface=xlstm_medium agent_params.batch_size=32 +agent_params.accumulation_steps=6 +agent_params.huggingface.xlstm_config.slstm_at='[1]' +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# DT
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=16M_dt_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain run_params=pretrain eval_params=pretrain agent_params/huggingface=dt_medium_64 +agent_params.model_kwargs.global_pos_embds=True agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# Mamba
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=16M_mamba_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDMamba run_params=pretrain eval_params=pretrain agent_params/huggingface=mamba_medium agent_params.compile=False agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

48M models:

# xLSTM [1:0] 
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=48M_xlstm_m_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDXLSTM run_params=pretrain eval_params=pretrain agent_params/huggingface=xlstm_mediumplus agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# xLSTM [7:1]
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=48M_xlstm_ms_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDXLSTM run_params=pretrain eval_params=pretrain agent_params/huggingface=xlstm_mediumplus agent_params.batch_size=32 +agent_params.accumulation_steps=6 +agent_params.huggingface.xlstm_config.slstm_at='[1,3]' +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# DT
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=48M_dt_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain run_params=pretrain eval_params=pretrain agent_params/huggingface=dt_mediumplus_64 +agent_params.model_kwargs.global_pos_embds=True agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# Mamba
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=48M_mamba_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDMamba run_params=pretrain eval_params=pretrain agent_params/huggingface=mamba_mediumplus agent_params.compile=False agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

110M models:

# xLSTM [1:0]
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=110M_xlstm_m_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDXLSTM run_params=pretrain eval_params=pretrain agent_params/huggingface=xlstm_large agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# xLSTM [7:1]
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=110M_xlstm_ms_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDXLSTM run_params=pretrain eval_params=pretrain agent_params/huggingface=xlstm_large agent_params.batch_size=32 +agent_params.accumulation_steps=6 +agent_params.huggingface.xlstm_config.slstm_at='[1,3]' +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# DT
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=110M_dt_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain run_params=pretrain eval_params=pretrain agent_params/huggingface=dt_largeplus_64 +agent_params.model_kwargs.global_pos_embds=True agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# Mamba
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=110M_mamba_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDMamba run_params=pretrain eval_params=pretrain agent_params/huggingface=mamba_large agent_params.compile=False agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

208M models:

# xLSTM [1:0]
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=206M_xlstm_m_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDXLSTM run_params=pretrain eval_params=pretrain agent_params/huggingface=xlstm_huge agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# xLSTM [7:1]
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=206M_xlstm_ms_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDXLSTM run_params=pretrain eval_params=pretrain agent_params/huggingface=xlstm_huge agent_params.batch_size=32 +agent_params.accumulation_steps=6 +agent_params.huggingface.xlstm_config.slstm_at='[1,3,5]' +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# DT
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=206M_dt_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain run_params=pretrain eval_params=pretrain agent_params/huggingface=dt_huge +agent_params.model_kwargs.global_pos_embds=True agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

# Mamba
python main.py -m +hydra/launcher=torchrun hydra.launcher.nproc_per_node=4 +ddp=True seed=44 experiment_name=206M_mamba_v1 env_params=mt_dmc_procgen_atari_cs_mg agent_params=multi_domain agent_params.kind=MDDMamba run_params=pretrain eval_params=pretrain agent_params/huggingface=mamba_huge agent_params.compile=False agent_params.batch_size=32 +agent_params.accumulation_steps=6 +eval_params.use_valid_callback=True +wandb_callback_params=pretrain

Citation

If you find this useful, please consider citing our work:

@article{schmied2024,
  title={A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks},
  author={Schmied, Thomas and Adler, Thomas and Patil, Vihang and Beck, Maximilian and Pöppel, Korbinian and Brandstetter, Johannes and Klambauer, Günter and Pascanu, Razvan and Hochreiter, Sepp},
  journal={ArXiv},
  year={2024},
  url={https://arxiv.org/abs/2410.22391}
}