-
Notifications
You must be signed in to change notification settings - Fork 4
/
helmv2_trainer.py
588 lines (504 loc) · 26.1 KB
/
helmv2_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import warnings
from typing import Any, Dict, Optional, Type, Union
import numpy as np
import torch as th
import os
import random
import zipfile
import glob
import json
import torch.cuda
from gym import spaces
from torch.nn import functional as F
import time
from utils import get_linear_burn_in_fn, get_exp_decay, RolloutBuffer
from variables import procgen_envs
from model import HELMv2
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import ActorCriticPolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_schedule_fn, constant_fn
from stable_baselines3.common.vec_env import VecEnv
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.utils import safe_mean, get_latest_run_id, get_linear_fn
from stable_baselines3.common.running_mean_std import RunningMeanStd
class HELMv2PPO(OnPolicyAlgorithm):
"""
Proximal Policy Optimization algorithm (PPO) (clip version)
Paper: https://arxiv.org/abs/1707.06347
Code: This implementation borrows code from OpenAI Spinning Up (https://github.com/openai/spinningup/)
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and
and Stable Baselines (PPO2 from https://github.com/hill-a/stable-baselines)
Introduction to PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: The learning rate, it can be a function
of the current progress remaining (from 1 to 0)
:param n_steps: The number of steps to run for each environment per update
(i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel)
NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization)
See https://github.com/pytorch/pytorch/issues/29372
:param batch_size: Minibatch size
:param n_epochs: Number of epoch when optimizing the surrogate loss
:param gamma: Discount factor
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
:param clip_range: Clipping parameter, it can be a function of the current progress
remaining (from 1 to 0).
:param clip_range_vf: Clipping parameter for the value function,
it can be a function of the current progress remaining (from 1 to 0).
This is a parameter specific to the OpenAI implementation. If None is passed (default),
no clipping will be done on the value function.
IMPORTANT: this clipping depends on the reward scaling.
:param ent_coef: Entropy coefficient for the loss calculation
:param vf_coef: Value function coefficient for the loss calculation
:param max_grad_norm: The maximum value for the gradient clipping
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)
:param target_kl: Limit the KL divergence between updates,
because the clipping is not enough to prevent large update
see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213)
By default, there is no limit on the kl div.
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param create_eval_env: Whether to create a second environment that will be
used for evaluating the agent periodically. (Only available when passing string for the environment)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
def __init__(
self,
policy: Union[str, Type[ActorCriticPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 3e-4,
n_steps: int = 2048,
batch_size: Optional[int] = 64,
n_epochs: int = 10,
gamma: float = 0.99,
gae_lambda: float = 0.95,
clip_range: Union[float, Schedule] = 0.2,
clip_range_vf: Union[None, float, Schedule] = None,
ent_coef: float = 0.0,
vf_coef: float = 0.5,
max_grad_norm: float = 0.5,
use_sde: bool = False,
sde_sample_freq: int = -1,
target_kl: Optional[float] = None,
tensorboard_log: Optional[str] = None,
create_eval_env: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
lr_decay: str = "none",
ent_decay: str = "none",
ent_decay_factor: float = 0.9,
n_envs: int = 1,
start_fraction: float = 0,
end_fraction: float = 1.0,
min_lr: float = 1e-7,
min_ent_coef: float = 1e-4,
config: dict = None,
clip_decay: int = None,
adv_norm: bool = False,
save_ckpt: bool = True
):
super(HELMv2PPO, self).__init__(
policy,
env,
learning_rate=learning_rate,
n_steps=n_steps,
gamma=gamma,
gae_lambda=gae_lambda,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
tensorboard_log=tensorboard_log,
policy_kwargs=policy_kwargs,
verbose=verbose,
device=device,
create_eval_env=create_eval_env,
_init_setup_model=False,
supported_action_spaces=(
spaces.Box,
spaces.Discrete,
spaces.MultiDiscrete,
spaces.MultiBinary,
),
)
if self.env is not None:
# Check that `n_steps * n_envs > 1` to avoid NaN
# when doing advantage normalization
buffer_size = self.env.num_envs * self.n_steps
assert (
buffer_size > 1
), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}"
# Check that the rollout buffer size is a multiple of the mini-batch size
untruncated_batches = buffer_size // batch_size
if buffer_size % batch_size > 0:
warnings.warn(
f"You have specified a mini-batch size of {batch_size},"
f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`,"
f" after every {untruncated_batches} untruncated mini-batches,"
f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n"
f"We recommend using a `batch_size` that is a multiple of `n_steps * n_envs`.\n"
f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})"
)
self.n_epochs = n_epochs
self.clip_range = clip_range
self.clip_range_vf = clip_range_vf
self.target_kl = target_kl
self.highest_return = 0.0
self.config = config
self._last_mems = None
if lr_decay == 'none':
self.learning_rate = constant_fn(learning_rate)
elif lr_decay == 'linear':
self.learning_rate = get_linear_fn(learning_rate, min_lr, end_fraction=end_fraction)
elif lr_decay == 'linear_burn_in':
self.learning_rate = get_linear_burn_in_fn(learning_rate, min_lr, start_fraction=start_fraction, end_fraction=end_fraction)
elif lr_decay == 'exp':
self.learning_rate = get_exp_decay(learning_rate, ent_decay_factor, start_fraction=start_fraction)
else:
raise NotImplementedError(f"Learning Rate Decay {lr_decay} not implemented")
if ent_decay == 'none':
self.ent_coef = constant_fn(ent_coef)
elif ent_decay == 'linear':
self.ent_coef = get_linear_fn(ent_coef, min_ent_coef, end_fraction=end_fraction)
elif ent_decay == 'linear_burn_in':
self.ent_coef = get_linear_burn_in_fn(ent_coef, min_ent_coef, start_fraction=start_fraction, end_fraction=end_fraction)
elif ent_decay == 'exp':
self.ent_coef = get_exp_decay(ent_coef, ent_decay_factor, start_fraction)
else:
raise NotImplementedError(f"Entropy Decay {ent_decay} not implemented")
if clip_decay == 'none':
self.clip_range = constant_fn(clip_range)
elif clip_decay == 'linear':
self.clip_range = get_linear_fn(clip_range, end=0, end_fraction=1)
else:
raise NotImplementedError(f"Clipping factor decay {clip_decay} not implemented")
self.entropy_coef = ent_coef
self.lr_decay = lr_decay
self.ent_decay = ent_decay
self.counter = 0
self.n_envs = n_envs
self.adv_norm = adv_norm
self.save_ckpt = save_ckpt
if self.adv_norm:
self._adv_rms = RunningMeanStd(shape=())
if _init_setup_model:
self._setup_model()
if seed is not None:
self._set_seed(seed)
self.rollout_buffer = RolloutBuffer(self.n_steps, self.observation_space, self.action_space, device,
gamma=gamma, gae_lambda=gae_lambda, n_envs=n_envs)
self.policy = HELMv2(env.action_space, self.observation_space.shape, self.config['optimizer'],
self.config['learning_rate'], device=self.device).to(self.device)
def _set_seed(self, seed: int) -> None:
"""
Seed the different random generators.
:param seed:
"""
# Seed python RNG
random.seed(seed)
# Seed numpy RNG
np.random.seed(seed)
# seed the RNG for all devices (both CPU and CUDA)
th.manual_seed(seed)
# Deterministic operations for CuDNN, it may impact performances
th.backends.cudnn.deterministic = True
th.backends.cudnn.benchmark = False
self.action_space.seed(seed)
if self.env is not None and self.config['env'] not in procgen_envs:
# procgen environments do not support setting the seed that way
self.env.seed(seed)
def _setup_model(self) -> None:
super(HELMv2PPO, self)._setup_model()
# Initialize schedules for policy/value clipping
# self.clip_range = get_schedule_fn(self.clip_range)
if self.clip_range_vf is not None:
if isinstance(self.clip_range_vf, (float, int)):
assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping"
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
self.ent_coef_schedule = get_schedule_fn(self.ent_coef)
self.clip_range_schedule = get_schedule_fn(self.clip_range)
def _update_entropy_coef(self) -> None:
# Log the current entropy coefficient
if self.ent_decay == 'exp':
self.ent_coef = self.ent_coef_schedule(self._current_progress_remaining, self.counter)
else:
self.ent_coef = self.ent_coef_schedule(self._current_progress_remaining)
self.logger.record("train/ent_coef", self.ent_coef)
def _dump_sources(self, outpath) -> None:
zipf = zipfile.ZipFile(os.path.join(outpath, 'LMRL.zip'), 'w', zipfile.ZIP_DEFLATED)
src_files = glob.glob(f'{os.path.abspath(".")}/**/*.py', recursive=True)
for file in src_files:
zipf.write(file, os.path.relpath(file, '../'))
def _dump_config(self, outpath) -> None:
with open(os.path.join(outpath, '../config.json'), 'w') as f:
f.write(json.dumps(self.config, indent=4, sort_keys=True))
def train(self) -> None:
"""
Update policy using the currently gathered rollout buffer.
"""
# Update optimizer learning rate
self._update_learning_rate(self.policy.optimizer)
self._update_entropy_coef()
# Compute current clip range
clip_range = self.clip_range(self._current_progress_remaining)
# Optional: clip range for the value function
if self.clip_range_vf is not None:
clip_range_vf = self.clip_range_vf(self._current_progress_remaining)
else:
clip_range_vf = None
self.policy.train()
# Set TrXL to evaluation mode,
self.policy.model.eval()
entropy_losses, all_kl_divs = [], []
pg_losses, value_losses = [], []
clip_fractions = []
exp_vars = []
approx_kl_divs = []
losses = []
# train for n_epochs epochs
start = time.time()
for epoch in range(self.n_epochs):
generator = self.rollout_buffer.get(n_batches=self.config['n_batches'])
for rollout_data in generator:
hiddens = rollout_data.hiddens
actions = rollout_data.actions
advantages = rollout_data.advantages
old_values = rollout_data.old_values
observations = rollout_data.observations
old_log_prob = rollout_data.old_log_prob
returns = rollout_data.returns
if isinstance(self.action_space, spaces.Discrete):
# Convert discrete action from float to long
actions = actions.long()
values, log_prob, entropy = self.policy.evaluate_actions(hiddens, actions, observations)
# Normalize advantage
if len(advantages) > 1:
values = values.squeeze()
self.logger.record('train/adv_std', advantages.std().detach().cpu().item())
self.logger.record('train/adv_mean', advantages.mean().detach().cpu().item())
if self.adv_norm:
# use running stats for advantage normalization
self._adv_rms.update(advantages.detach().cpu().numpy())
advantages = self._norm_advs(advantages)
else:
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# ratio between old and new policy, should be one at the first iteration
ratio = th.exp(log_prob - old_log_prob)
if isinstance(self.action_space, spaces.Box):
advantages = advantages.unsqueeze(-1)
policy_loss_1 = advantages * ratio
policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range)
policy_loss = -th.min(policy_loss_1, policy_loss_2).mean()
# Logging
clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item()
if self.clip_range_vf is None:
# No clipping
values_pred = values
else:
# Clip the different between old and new value
# NOTE: this depends on the reward scaling
values_pred = old_values + th.clamp(values - old_values, -clip_range_vf, clip_range_vf)
# Value loss using the TD(gae_lambda) target
# Normalize returns
value_loss = F.mse_loss(returns, values_pred)
# Entropy loss favor exploration
if entropy is None:
# Approximate entropy when no analytical form
entropy_loss = -th.mean(-log_prob)
else:
entropy_loss = -th.mean(entropy)
loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss
entropy_losses.append(entropy_loss.item())
pg_losses.append(policy_loss.item())
value_losses.append(value_loss.item())
clip_fractions.append(clip_fraction)
# Re-sample the noise matrix because the log_std has changed
# if that line is commented (as in SAC)
if self.use_sde:
self.policy.reset_noise(self.batch_size)
# Optimization step
self.policy.optimizer.zero_grad(set_to_none=True)
if hasattr(self.policy, 'trxl_optimizer'):
self.policy.trxl_optimizer.zero_grad(set_to_none=True)
loss.backward()
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
approx_kl_divs.append(th.mean(old_log_prob - log_prob).detach().cpu().numpy())
exp_var = explained_variance(values.cpu().detach().numpy().flatten(),
returns.cpu().detach().numpy().flatten())
exp_vars.append(exp_var)
losses.append(loss.detach().cpu().item())
all_kl_divs.append(np.mean(approx_kl_divs))
if self.target_kl is not None and np.mean(approx_kl_divs) > 1.5 * self.target_kl:
print(f"Early stopping at step {epoch} due to reaching max kl: {np.mean(approx_kl_divs):.2f}")
break
self._n_updates += 1
explained_var = np.mean(exp_vars)
end = time.time()
print(f"Update Time: {end - start} seconds")
# Logs
self.logger.record("train/entropy_loss", np.mean(entropy_losses))
self.logger.record("train/policy_gradient_loss", np.mean(pg_losses))
self.logger.record("train/value_loss", np.mean(value_losses))
self.logger.record("train/approx_kl", np.mean(approx_kl_divs))
self.logger.record("train/clip_fraction", np.mean(clip_fractions))
self.logger.record("train/loss", np.mean(losses))
self.logger.record("train/explained_variance", explained_var)
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
self.logger.record("train/clip_range", clip_range)
if self.clip_range_vf is not None:
self.logger.record("train/clip_range_vf", clip_range_vf)
def _norm_advs(self, advs: np.ndarray, epsilon: float = 1e-8) -> np.ndarray:
advs = advs / np.sqrt(self._adv_rms.var + epsilon)
return advs
def collect_rollouts(self, env: VecEnv, callback: BaseCallback, rollout_buffer: RolloutBuffer,
n_rollout_steps: int) -> bool:
"""
Collect experiences using the current policy and fill a ``RolloutBuffer``.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.
:param env: The training environment
:param callback: Callback that will be called at each step
(and at the beginning and end of the rollout)
:param rollout_buffer: Buffer to fill with rollouts
:param n_rollout_steps: Number of experiences to collect per environment
:return: True if function returned with at least `n_rollout_steps`
collected, False if callback terminated rollout prematurely.
"""
assert self._last_obs is not None, "No previous observation was provided"
start = time.time()
n_steps = 0
rollout_buffer.reset()
self.policy.eval()
callback.on_rollout_start()
# Initialize memory on first rollout collection
if self._last_mems is None:
self._last_mems = [torch.zeros((self.policy.mem_len, self.n_envs, self.policy.model.d_embed)).to(self.device)
for _ in range(self.policy.model.n_layer)]
start = time.time()
while n_steps < n_rollout_steps:
if self.use_sde and self.sde_sample_freq > 0 and n_steps % self.sde_sample_freq == 0:
# Sample a new noise matrix
self.policy.reset_noise(env.num_envs)
with th.no_grad():
image_obs = self._last_obs
high = env.observation_space.high.reshape(-1)[0]
observations = torch.tensor(image_obs / high).float().to(self.device)
self.policy.memory = self._last_mems
action, value, log_prob, hidden = self.policy(observations)
self._last_mems = self.policy.memory
new_obs, rewards, dones, infos = env.step(action)
self.num_timesteps += env.num_envs
# Give access to local variables
callback.update_locals(locals())
if callback.on_step() is False:
return False
n_steps += 1
self._update_info_buffer(infos)
add_obs = observations.cpu().numpy()
action = np.expand_dims(action, axis=-1)
rollout_buffer.add(add_obs, hidden, action, rewards, self._last_episode_starts, value, log_prob)
self._last_obs = new_obs
self._last_episode_starts = dones
for l in range(len(self._last_mems)):
self._last_mems[l][:, self._last_episode_starts] = 0.
with th.no_grad():
image_obs = self._last_obs
high = env.observation_space.high.reshape(-1)[0]
observations = torch.tensor(image_obs / high).float().to(self.device)
self.policy.memory = self._last_mems
action, value, log_prob, hidden = self.policy(observations)
rollout_buffer.compute_returns_and_advantage(last_values=value, dones=self._last_episode_starts)
callback.on_rollout_end()
if self.save_ckpt:
if len(self.ep_info_buffer) < self.n_envs:
ret = [ep_info['r'] for ep_info in self.ep_info_buffer]
ret = safe_mean(ret + [0.] * (self.n_envs - len(ret)))
else:
ret = safe_mean([ep_info["r"] for ep_info in self.ep_info_buffer])
if not self.counter or self.highest_return < ret:
self.highest_return = ret if not np.isnan(ret) else 0.0
checkpoint = self._prepare_checkpoint()
th.save(checkpoint, os.path.join(self.save_path, f'ckpt_best.pt'))
print("Saved model checkpoint!!")
end = time.time()
print(f"Rollout Time: {end - start}\n")
return True
def _prepare_checkpoint(self):
ent_coef = self.ent_coef_schedule(self._current_progress_remaining, self.counter) \
if self.ent_decay == 'exp' else self.ent_coef_schedule(self._current_progress_remaining)
lr = self.lr_schedule(self._current_progress_remaining)
clip_range = self.clip_range_schedule(self._current_progress_remaining)
module_names = [d for d in dir(self.policy) if not d.startswith('_') and
isinstance(getattr(self.policy, d), torch.nn.Module) and d != 'model']
checkpoint = {
'network': {},
'optimizer': self.policy.optimizer.state_dict(),
'num_timesteps': self.num_timesteps,
'ent_coef': ent_coef,
'learning_rate': lr,
'clip_range': clip_range
}
for m_name in module_names:
checkpoint['network'][m_name] = getattr(self.policy, m_name).state_dict()
checkpoint['seed'] = (np.random.get_state(), torch.get_rng_state(), random.getstate())
return checkpoint
def learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 1,
eval_env: Optional[GymEnv] = None,
eval_freq: int = -1,
n_eval_episodes: int = 5,
tb_log_name: str = "PPO",
eval_log_path: Optional[str] = None,
reset_num_timesteps: bool = True,
) -> "OnPolicyAlgorithm":
iteration = 0
total_timesteps, callback = self._setup_learn(
total_timesteps, None, callback, 1, 100, eval_log_path, reset_num_timesteps,
tb_log_name
)
latest_run = get_latest_run_id(self.tensorboard_log, 'PPO')
self.save_path = os.path.join(os.path.join(self.tensorboard_log, f'PPO_{latest_run}'))
callback.on_training_start(locals(), globals())
self._dump_sources(self.save_path)
self._dump_config(self.save_path)
while self.num_timesteps < total_timesteps:
continue_training = self.collect_rollouts(self.env, callback, self.rollout_buffer, self.n_steps)
if continue_training is False:
break
iteration += 1
self._update_current_progress_remaining(self.num_timesteps, total_timesteps)
# Display training infos
if log_interval is not None and iteration % log_interval == 0:
fps = int(self.num_timesteps / (time.time() - self.start_time))
self.logger.record("time/iterations", iteration, exclude="tensorboard")
if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0:
returns = [ep_info["r"] for ep_info in self.ep_info_buffer]
if len(returns) < self.n_envs:
returns = returns + [0] * (self.n_envs - len(returns))
self.logger.record("rollout/ep_rew_mean", safe_mean(returns))
self.logger.record("rollout/ep_len_mean",
safe_mean([ep_info["l"] for ep_info in self.ep_info_buffer]))
self.logger.record("time/fps", fps)
self.logger.record("time/time_elapsed", int(time.time() - self.start_time), exclude="tensorboard")
self.logger.record("time/total_timesteps", self.num_timesteps, exclude="tensorboard")
self.logger.dump(step=self.num_timesteps)
self.train()
self.counter += 1
callback.on_training_end()
return self