-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_search.py
166 lines (142 loc) · 5.89 KB
/
model_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from operations import *
from torch.autograd import Variable
from genotypes import PRIMITIVES
from genotypes import Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride, switch, p):
super(MixedOp, self).__init__()
self.m_ops = nn.ModuleList()
self.p = p
for i in range(len(switch)):
if switch[i]:
primitive = PRIMITIVES[i]
op = OPS[primitive](C, stride, False)
if 'pool' in primitive:
op = nn.Sequential(op, nn.BatchNorm2d(C, affine=False))
if isinstance(op, Identity) and p > 0:
op = nn.Sequential(op, nn.Dropout(self.p))
self.m_ops.append(op)
def update_p(self):
for op in self.m_ops:
if isinstance(op, nn.Sequential):
if isinstance(op[0], Identity):
op[1].p = self.p
def forward(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self.m_ops))
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, switches, p):
super(Cell, self).__init__()
self.reduction = reduction
self.p = p
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self.cell_ops = nn.ModuleList()
switch_count = 0
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride, switch=switches[switch_count], p=self.p)
self.cell_ops.append(op)
switch_count = switch_count + 1
def update_p(self):
for op in self.cell_ops:
op.p = self.p
op.update_p()
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
offset = 0
for i in range(self._steps):
s = sum(self.cell_ops[offset+j](h, weights[offset+j]) for j, h in enumerate(states))
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class Network(nn.Module):
def __init__(self, C, C_in, num_classes, layers, criterion, steps=4, multiplier=4, stem_multiplier=3, switches_normal=[], switches_reduce=[], p=0.0):
super(Network, self).__init__()
self._C = C
self._C_in = C_in
self._num_classes = num_classes
self._layers = layers
self._criterion = criterion
self._steps = steps
self._multiplier = multiplier
self.p = p
self.switches_normal = switches_normal
switch_ons = []
for i in range(len(switches_normal)):
ons = 0
for j in range(len(switches_normal[i])):
if switches_normal[i][j]:
ons = ons + 1
switch_ons.append(ons)
ons = 0
self.switch_on = switch_ons[0]
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(C_in, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
self.cells = nn.ModuleList()
reduction_prev = False
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, switches_reduce, self.p)
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, switches_normal, self.p)
# cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, switches)
reduction_prev = reduction
self.cells += [cell]
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self._initialize_alphas()
def forward(self, input):
s0 = s1 = self.stem(input)
for i, cell in enumerate(self.cells):
if cell.reduction:
if self.alphas_reduce.size(1) == 1:
weights = F.softmax(self.alphas_reduce, dim=0)
else:
weights = F.softmax(self.alphas_reduce, dim=-1)
else:
if self.alphas_normal.size(1) == 1:
weights = F.softmax(self.alphas_normal, dim=0)
else:
weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
logits = self.classifier(out.view(out.size(0),-1))
return logits
def update_p(self):
for cell in self.cells:
cell.p = self.p
cell.update_p()
def _loss(self, input, target):
logits = self(input)
return self._criterion(logits, target)
def _initialize_alphas(self):
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = self.switch_on
self.alphas_normal = nn.Parameter(torch.FloatTensor(1e-3*np.random.randn(k, num_ops)))
self.alphas_reduce = nn.Parameter(torch.FloatTensor(1e-3*np.random.randn(k, num_ops)))
self._arch_parameters = [
self.alphas_normal,
self.alphas_reduce,
]
def arch_parameters(self):
return self._arch_parameters