-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
626 lines (532 loc) · 23.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
"""
Code for the paper:
Beyond Alternating Updates for Matrix Factorization with
Inertial Bregman Proximal Gradient Algorithms
Paper authors: Mahesh Chandra Mukkamala, Peter Ochs
Algorithms Implemented:
BPG: Bregman Proximal Gradient
CoCaIn BPG-MF: Convex Concave Inertial (CoCaIn) BPG for Matrix Factorization
BPG-MF-WB: BPG for Matrix Factorization with Backtracking
PALM: Proximal Alternating Linearized Minimization
iPALM: Inertial Proximal Alternating Linearized Minimization
References:
CoCaIn BPG paper: https://arxiv.org/abs/1904.03537
PALM paper: https://link.springer.com/article/10.1007/s10107-013-0701-9
iPALM paper: https://arxiv.org/abs/1702.02505
Contact: Mahesh Chandra Mukkamala (mukkamala@math.uni-sb.de)
"""
# starting to track time
import time
st_time = time.time()
time_vals = [st_time]
# load necessary packages
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
from my_functions import *
import os
# for logging
# import logging
# logging.basicConfig(filename='logs/main.log', filemode='a', format='%(levelname)s - %(message)s',level=logging.ERROR)
# logging.info('About to start the processing.')
np.random.seed(0) # incase of random initialization
# creating arguments to automate the experiments
import argparse
parser = argparse.ArgumentParser(description='Simple Experiments')
parser.add_argument('--lam', '--regularization-parameter', default=1e-1,type=float, dest='lam')
parser.add_argument('--algo', '--algorithm', default=1,type=int, dest='algo')
parser.add_argument('--beta', '--palm-beta', default=0,type=float, dest='beta')
parser.add_argument('--max_iter', '--max_iter', default=1000,type=int, dest='max_iter')
parser.add_argument('--dataset_option', '--dataset-option', default=2,type=int, dest='dataset_option')
parser.add_argument('--rank', '--rank', default=5,type=int, dest='rank')
parser.add_argument('--exp_option', '--exp_option', default=1,type=int, dest='exp_option')
parser.add_argument('--fun_num', '--fun_num', default=1,type=int, dest='fun_num')
parser.add_argument('--abs_fun_num', '--abs_fun_num', default=3,type=int, dest='abs_fun_num')
parser.add_argument('--breg_num', '--breg_num', default=1,type=int, dest='breg_num')
parser.add_argument('--uL_est', '--uL_est', default=0.01,type=float, dest='uL_est')
parser.add_argument('--lL_est', '--lL_est', default=0.01,type=float, dest='lL_est')
parser.add_argument('--force_exp', '--force_exp', default=0,type=int, dest='force_exp')
parser.add_argument('--seed_exp', '--seed_exp', default=0,type=int, dest='seed_exp')
parser.add_argument('--seed_exp_num', '--seed_exp_num', default=0,type=int, dest='seed_exp_num')
args = parser.parse_args()
# force_exp: to force exp even though file exists
# 0 for force_exp = False # 1 for force_exp=True
# uL_est used for CoCaIn BPG-MF, BPG-MF-WB (estimate for upper bound)
# lL_est used for CoCaIn BPG-MF (estimate for lower bound bound)
# some backward compatibility and initialization
lam = args.lam
algo=args.algo
rank = args.rank
fun_num = args.fun_num
abs_fun_num = args.abs_fun_num
breg_num = args.breg_num
exp_option = args.exp_option
dataset_option = args.dataset_option
max_iter = args.max_iter
seed_exp = args.seed_exp
seed_exp_num = args.seed_exp_num
uL_est = args.uL_est
if algo==1:
uL_est = 1.1 # BPG-MF with fixed upper bound value thus fixed step-size
lL_est = args.lL_est
beta = args.beta
if args.force_exp == 0:
force_exp = False
else:
force_exp = True
# logging.info('Arguments are '+ str(args) )
# Loading datasets with some backward compatibility
if dataset_option ==2:
# Dataset option 2 = Medulloblastoma data set
# More info give at http://nimfa.biolab.si/nimfa.examples.medulloblastoma.html
import nimfa
A = nimfa.examples.medulloblastoma.read(normalize=True)
U = np.ones((5893,rank))*0.1
Z = np.ones((rank,34))*0.1
elif dataset_option == 3:
# Dataset option 2 = Randomly generated synthetic data set
A = np.loadtxt('matrix_200.txt', delimiter=',')
dim = 200
if seed_exp==0:
U = np.ones((dim,rank))*0.1
Z = np.ones((rank,dim))*0.1
else:
np.random.seed(seed_exp_num)
U = np.random.rand(dim,rank)*0.1
Z = np.random.rand(rank,dim)*0.1
elif dataset_option == 4:
dim = 900
rank = 10000
A = np.loadtxt('data/Wcp.txt')
print(A.shape)
U = np.random.rand(dim,rank)*4 #(dim,rank)*0.1
Z = U.T
lL_est = 0.0000001
uL_est = 0.001
else:
pass
# more initialization
prev_U = U
prev_Z = Z
# Some functions required to run CoCaIn BPG based algorithms
def find_gamma(A,U,Z,prev_U,prev_Z,uL_est, lL_est):
# Finding gamma for for CoCaIn BPG-MF
gamma = 1 # best initial guess
kappa = 0.999999*(uL_est/(uL_est+lL_est)) # delta-epsilon chosen close to 1
y_U = U+ gamma*(U-prev_U)
y_Z = Z+ gamma*(Z-prev_Z)
while ((kappa*breg(prev_U, prev_Z, U, Z, breg_num=breg_num,c_1=c_1,c_2=c_2)\
-breg(U, Z, y_U, y_Z, breg_num=breg_num,c_1=c_1,c_2=c_2))<-1e-10):
# thresholding
# reduce inertia if the condition above fails
gamma = gamma*0.9
y_U = U+ gamma*(U-prev_U)
y_Z = Z+ gamma*(Z-prev_Z)
if gamma <= 1e-10:
# thresholding (not required)
gamma = 0
return y_U,y_Z, gamma
def do_lb_search(A, U, Z, U1, Z1, lam, uL_est,lL_est, warm_option=False):
# Lower Bound Backtracking for CoCaIn BPG-MF
backtracking_iter_counter = 0
y_U,y_Z, gamma = find_gamma(A,U,Z,U1,Z1,uL_est, lL_est)
while((abs_func(A, U, Z, y_U, y_Z, lam, abs_fun_num = abs_fun_num, fun_num=fun_num)\
-main_func(A, U, Z, lam, fun_num=fun_num)\
-(lL_est*breg(U, Z, y_U, y_Z, breg_num=breg_num,c_1=c_1,c_2=c_2)))>1e-10):
# thresholding
lL_est = (1.1)*lL_est
# print('Lower Backtracking with '+ str(lL_est))
# print((abs_func(A, U, Z, y_U, y_Z, lam, abs_fun_num = abs_fun_num, fun_num=fun_num)))
# print(main_func(A, U, Z, lam, fun_num=fun_num))
# print(breg(U, Z, y_U, y_Z, breg_num=breg_num,c_1=c_1,c_2=c_2))
# logging.info('Lower Backtracking with '+ str(lL_est))
y_U,y_Z, gamma = find_gamma(A,U,Z,U1,Z1,uL_est, lL_est)
backtracking_iter_counter+=1
if backtracking_iter_counter == 0 and warm_option==True:
lL_est = (0.9)*lL_est
return lL_est, y_U, y_Z, gamma
def do_ub_search(A, y_U,y_Z, uL_est, warm_option=False):
# Upper Bound Backtracking for CoCaIn BPG-MF, BPG-MF-WB
backtracking_iter_counter = 0
x_U,x_Z = make_update(y_U,y_Z, uL_est,lam, fun_num=fun_num, \
abs_fun_num=abs_fun_num,breg_num=breg_num, A=A,c_1=c_1,c_2=c_2, exp_option=exp_option)
while((abs_func(A, x_U,x_Z,y_U,y_Z, lam, abs_fun_num = abs_fun_num, fun_num=fun_num)\
-main_func(A, x_U,x_Z, lam, fun_num=fun_num)\
+(uL_est*breg(x_U, x_Z, y_U, y_Z, breg_num=breg_num,c_1=c_1,c_2=c_2)))<-1e-10):
# thresholding
backtracking_iter_counter+=1
uL_est = (1.1)*uL_est
# print('Upper Backtracking with '+ str(uL_est))
# print(abs_func(A, x_U,x_Z,y_U,y_Z, lam, abs_fun_num = abs_fun_num, fun_num=fun_num))
# print(main_func(A, x_U,x_Z, lam, fun_num=fun_num))
# print(breg(x_U, x_Z, y_U, y_Z, breg_num=breg_num,c_1=c_1,c_2=c_2))
# logging.info('Lower Delta is ' + str(abs_func(A, x_U,x_Z,y_U,y_Z, lam, abs_fun_num = abs_fun_num, fun_num=fun_num)\
# -main_func(A, x_U,x_Z, lam, fun_num=fun_num)\
# +(uL_est*breg(x_U, x_Z, y_U, y_Z, breg_num=breg_num,c_1=c_1,c_2=c_2))))
# logging.info('Lower Backtracking with '+ str(uL_est))
x_U,x_Z = make_update(y_U,y_Z, uL_est,lam, fun_num=fun_num, \
abs_fun_num=abs_fun_num,breg_num=breg_num, A=A,c_1=c_1,c_2=c_2, exp_option=exp_option)
if backtracking_iter_counter==0 and warm_option==True:
uL_est = (0.9)*uL_est
return uL_est, x_U, x_Z
if algo==1:
# BPG-MF implementation
# BPG-MF: Bregman Proximal Gradient for Matrix Factorization
# BPG-MF takes the following two parameters as input
c_1 = 3
c_2 = (np.linalg.norm(A))
# Filenames creation
if exp_option==1 and seed_exp==0:
# without non-negativity constraints
filename = 'results/bpg_mf_fun_name_'+str(fun_num)+'_dataset_option_'\
+str(dataset_option)+'_abs_fun_num_'+str(abs_fun_num)\
+'_breg_num_'+str(breg_num) + '_lam_val_'+str(lam)+'_rank_val_'+str(rank)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==0:
# NMF settings with non-negativity constraints
filename = 'results/bpg_mf_fun_name_'+str(fun_num)+'_dataset_option_'\
+str(dataset_option)+'_abs_fun_num_'+str(abs_fun_num)\
+'_breg_num_'+str(breg_num) + '_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_exp_option_'+str(exp_option)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==1 and seed_exp==1:
# without non-negativity constraints
filename = 'results/bpg_mf_fun_name_'+str(fun_num)+'_dataset_option_'\
+str(dataset_option)+'_abs_fun_num_'+str(abs_fun_num)\
+'_breg_num_'+str(breg_num) + '_lam_val_'+str(lam)\
+'_rank_val_'+str(rank)+'_seed_exp_num_'+str(seed_exp_num)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==1:
# NMF settings with non-negativity constraints
filename = 'results/bpg_mf_fun_name_'+str(fun_num)+'_dataset_option_'\
+str(dataset_option)+'_abs_fun_num_'+str(abs_fun_num)\
+'_breg_num_'+str(breg_num) + '_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_exp_option_'+str(exp_option)+'_seed_exp_num_'+str(seed_exp_num)+'.txt'
else:
pass
# can ignore the following if, elif statements
# if statement for force_exp which repeats the experiment if it
# cannot find the file.
# elif is just to handle the automation script the beta argument
# is used for iPALM, so BPG does not require this and so we just use
# one value of beta to run BPG once and ignore other betas.
# TODO: Remove beta and find a better way to handle this
if os.path.isfile(filename) and not force_exp:
pass
elif beta>0:
pass
else:
# BPG for Matrix Factorization
temp = main_func(A, U, Z, lam, fun_num=fun_num)
print('temp is '+ str(temp))
train_rmse = [np.sqrt((main_func(A, U, Z, lam, fun_num=0)*2)/A.size)]
func_vals = [temp]
lyapunov_vals = [temp]
for i in range(max_iter):
U,Z = make_update(U,Z, uL_est,lam, fun_num=fun_num, abs_fun_num=abs_fun_num,\
breg_num=breg_num, A=A,c_1=c_1,c_2=c_2, exp_option=exp_option)
gamma = 0
temp = main_func(A, U, Z, lam, fun_num=fun_num)
rmse = (main_func(A, U, Z, lam, fun_num=0)*2)/A.size
train_rmse = train_rmse + [rmse]
print('BPG fun val is '+ str(temp)+ ' iter ' + str(i) + ' rmse ' + str(rmse))
# print('rmse is '+ str(rmse))
if np.isnan(temp):
raise
if np.isnan(rmse):
raise
func_vals = func_vals + [temp]
time_vals = time_vals + [time.time()]
np.savetxt(filename,np.c_[func_vals, time_vals, train_rmse])
elif algo==2:
# iPALM and PALM
# Filenames creation
if exp_option==1 and seed_exp==0:
# without non-negativity constraints
filename = 'results/palm_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)\
+'_beta_'+str(beta)+ '_lam_val_'+str(lam)+'_rank_val_'+str(rank)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==0:
# NMF settings with non-negativity constraints
filename = 'results/palm_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)\
+'_beta_'+str(beta)+ '_lam_val_'+str(lam)+'_rank_val_'+str(rank)+'_exp_option'+str(exp_option)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==1 and seed_exp==1:
# without non-negativity constraints
filename = 'results/palm_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)\
+'_beta_'+str(beta)+ '_lam_val_'+str(lam)+'_rank_val_'+str(rank)+'_seed_exp_num_'+str(seed_exp_num)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==1:
# NMF settings with non-negativity constraints
filename = 'results/palm_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)\
+'_beta_'+str(beta)+ '_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_exp_option'+str(exp_option)+'_seed_exp_num_'+str(seed_exp_num)+'.txt'
# logging.info('Fileneme is '+ filename)
else:
pass
if os.path.isfile(filename) and not force_exp:
pass
else:
temp = main_func(A, U, Z, lam, fun_num=fun_num)
train_rmse = [np.sqrt((main_func(A, U, Z, lam, fun_num=0)*2)/A.size)]
func_vals = [temp]
lyapunov_vals = [temp]
print('PALM/iPALM fun val is '+ str(temp)+ ' iter ' + str(0))
for i in range(max_iter):
t_U,t_Z = make_update(U,Z, uL_est,lam, fun_num=fun_num, A=A, abs_fun_num=abs_fun_num,\
breg_num=breg_num, U2=prev_U,Z2=prev_Z,beta=beta)
prev_U = U
prev_Z = Z
U = t_U
Z = t_Z
gamma = 0
temp = main_func(A, U, Z, lam, fun_num=fun_num)
print('PALM/iPALM fun val is '+ str(temp)+ ' iter ' + str(i))
rmse = (main_func(A, U, Z, lam, fun_num=0)*2)/A.size
train_rmse = train_rmse + [rmse]
if np.isnan(temp):
raise
if np.isnan(rmse):
raise
func_vals = func_vals + [temp]
time_vals = time_vals + [time.time()]
np.savetxt(filename,np.c_[func_vals, time_vals, train_rmse])
elif algo==3:
# CoCaIn BPG-MF implementation
# CoCaIn BPG-MF: CoCaIn BPG for Matrix Factorization
lL_est_main = lL_est
c_1 = 3
c_2 = (np.linalg.norm(A))
# Filenames creation
if exp_option==1 and seed_exp==0:
# without non-negativity constraints
filename = 'results/cocain_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+\
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==0:
# NMF settings with non-negativity constraints
filename = 'results/cocain_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+ \
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_exp_option_'+str(exp_option)+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'.txt'
# logging.info('Fileneme is '+ filename)
if exp_option==1 and seed_exp==1:
# without non-negativity constraints
filename = 'results/cocain_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+\
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'_seed_exp_num_'+str(seed_exp_num)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==1:
# NMF settings with non-negativity constraints
filename = 'results/cocain_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+ \
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_exp_option_'+str(exp_option)+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'_seed_exp_num_'+str(seed_exp_num)+'.txt'
# logging.info('Fileneme is '+ filename)
else:
pass
# can ignore the following if, elif statements
# if statement for force_exp which repeats the experiment if it
# cannot find the file.
# elif is just to handle the automation script the beta argument
# is used for iPALM, so BPG does not require this and so we just use
# one value of beta to run BPG once and ignore other betas.
# TODO: Remove beta and find a better way to handle this
if os.path.isfile(filename) and not force_exp:
pass
elif beta >0:
pass
else:
gamma_vals = [np.sqrt(uL_est/(uL_est+lL_est+1e-8))] # some initialization (can be 0)
uL_est_vals = [uL_est]
lL_est_vals = [lL_est]
train_rmse = [np.sqrt((main_func(A, U, Z, lam, fun_num=0)*2)/A.size)]
temp = main_func(A, U, Z, lam, fun_num=fun_num)
func_vals = [temp]
lyapunov_vals = [temp]
print('CoCaIn BPG fun val is '+ str(temp)+ ' iter ' + str(0) )
for i in range(max_iter):
lL_est, y_U, y_Z, gamma = do_lb_search(A, U, Z, prev_U, prev_Z, lam, uL_est,lL_est=lL_est_main)
# print('gamma ', gamma)
prev_U = U
prev_Z = Z
uL_est, U, Z = do_ub_search(A, y_U,y_Z, uL_est)
uL_est_vals = uL_est_vals + [uL_est]
lL_est_vals = lL_est_vals + [lL_est]
gamma_vals = gamma_vals + [gamma]
temp = main_func(A, U, Z, lam, fun_num=fun_num)
rmse = np.sqrt((main_func(A, U, Z, lam, fun_num=0)*2)/A.size)
train_rmse = train_rmse + [rmse]
if np.isnan(temp):
raise
if np.isnan(rmse):
raise
print('CoCaIn BPG fun val is '+ str(temp)+ ' iter ' + str(i) )
# print('Lyapunov function is '+ str(((1/uL_est)*temp) +breg( U, Z, prev_U, prev_Z, \
# breg_num=breg_num,c_1=c_1,c_2=c_2)))
func_vals = func_vals + [temp]
lyapunov_vals = lyapunov_vals + [((1/uL_est)*temp) +breg( U, Z, prev_U, prev_Z, \
breg_num=breg_num,c_1=c_1,c_2=c_2)]
time_vals = time_vals + [time.time()]
print(filename)
np.savetxt(filename,np.c_[func_vals,time_vals, lyapunov_vals, uL_est_vals, lL_est_vals, \
gamma_vals, train_rmse])
elif algo==4:
# BPG-MF-WB implementation
# BPG-MF-WB: BPG With Backtracking
lL_est_main = lL_est
c_1 = 3
c_2 = (np.linalg.norm(A))
# Filenames creation
if exp_option==1 and seed_exp==0:
# without non-negativity constraints
filename = 'results/bpg_mf_wb_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+ \
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==0:
# NMF settings with non-negativity constraints
filename = 'results/bpg_mf_wb_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+ \
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_exp_option_'+str(exp_option)+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'.txt'
# logging.info('Fileneme is '+ filename)
if exp_option==1 and seed_exp==1:
# without non-negativity constraints
filename = 'results/bpg_mf_wb_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+ \
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'_seed_exp_num_'+str(seed_exp_num)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==1:
# NMF settings with non-negativity constraints
filename = 'results/bpg_mf_wb_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+ \
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_exp_option_'+str(exp_option)+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'_seed_exp_num_'+str(seed_exp_num)+'.txt'
# logging.info('Fileneme is '+ filename)
else:
pass
# +'_seed_exp_num_'+str(seed_exp_num)
# can ignore the following if, elif statements
# if statement for force_exp which repeats the experiment if it
# cannot find the file.
# elif is just to handle the automation script the beta argument
# is used for iPALM, so BPG does not require this and so we just use
# one value of beta to run BPG once and ignore other betas.
# TODO: Remove beta and find a better way to handle this
if os.path.isfile(filename) and not force_exp:
pass
elif beta >0:
pass
else:
gamma_vals = [0]
uL_est_vals = [uL_est]
lL_est_vals = [lL_est]
train_rmse = [np.sqrt((main_func(A, U, Z, lam, fun_num=0)*2)/A.size)]
temp = main_func(A, U, Z, lam, fun_num=fun_num)
func_vals = [temp]
lyapunov_vals = [temp]
for i in range(max_iter):
gamma = 0
uL_est, U, Z = do_ub_search(A, U, Z, uL_est)
uL_est_vals = uL_est_vals + [uL_est]
lL_est_vals = lL_est_vals + [lL_est]
gamma_vals = gamma_vals + [gamma]
prev_fun_val = temp
temp = main_func(A, U, Z, lam, fun_num=fun_num)
# if temp>prev_fun_val:
# print('fun ', temp)
# print('prev_fun ', prev_fun_val)
# raise
rmse = np.sqrt((main_func(A, U, Z, lam, fun_num=0)*2)/A.size)
train_rmse = train_rmse + [rmse]
if np.isnan(temp):
raise
if np.isnan(rmse):
raise
print('BPG-WB fun val is '+ str(temp)+ ' iter ' + str(i) + ' rmse '+ str(rmse))
func_vals = func_vals + [temp]
lyapunov_vals = lyapunov_vals + [((1/uL_est)*temp) +breg( U, Z, prev_U,\
prev_Z, breg_num=breg_num,c_1=c_1,c_2=c_2)]
time_vals = time_vals + [time.time()]
np.savetxt(filename,np.c_[func_vals,time_vals, lyapunov_vals, uL_est_vals, lL_est_vals,\
gamma_vals, train_rmse])
elif algo==6:
# CoCaIn BPG-MF implementation (Heuristic for now so can ignore)
# CoCaIn BPG-MF: CoCaIn BPG for Matrix Factorization
lL_est_main = lL_est
c_1 = 3
c_2 = (np.linalg.norm(A))
# Filenames creation
if exp_option==1 and seed_exp==0:
# without non-negativity constraints
filename = 'results/cocain_warm_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+\
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'.txt'
# logging.info('Fileneme is '+ filename)
elif exp_option==2 and seed_exp==0:
# NMF settings with non-negativity constraints
filename = 'results/cocain_warm_mf_fun_name_'+str(fun_num)+'_dataset_option_'+str(dataset_option)\
+'_abs_fun_num_'+str(abs_fun_num)+'_breg_num_'+str(breg_num)+ \
'_lam_val_'+str(lam)+'_rank_val_'+str(rank)\
+'_exp_option_'+str(exp_option)+'_uL_est_'+str(uL_est)+'_lL_est_'+str(lL_est)+'.txt'
# logging.info('Fileneme is '+ filename)
else:
pass
# can ignore the following if, elif statements
# if statement for force_exp which repeats the experiment if it
# cannot find the file.
# elif is just to handle the automation script the beta argument
# is used for iPALM, so BPG does not require this and so we just use
# one value of beta to run BPG once and ignore other betas.
# TODO: Remove beta and find a better way to handle this
if os.path.isfile(filename) and not force_exp:
pass
elif beta >0:
pass
else:
gamma_vals = [np.sqrt(uL_est/(uL_est+lL_est+1e-8))] # some initialization (can be 0)
uL_est_vals = [uL_est]
lL_est_vals = [lL_est]
train_rmse = [np.sqrt((main_func(A, U, Z, lam, fun_num=0)*2)/A.size)]
temp = main_func(A, U, Z, lam, fun_num=fun_num)
func_vals = [temp]
lyapunov_vals = [temp]
for i in range(max_iter):
lL_est, y_U, y_Z, gamma = do_lb_search(A, U, Z, prev_U, prev_Z, lam, uL_est,lL_est=lL_est,warm_option=True)
prev_U = U
prev_Z = Z
uL_est, U, Z = do_ub_search(A, y_U,y_Z, uL_est,warm_option=True)
uL_est_vals = uL_est_vals + [uL_est]
lL_est_vals = lL_est_vals + [lL_est]
gamma_vals = gamma_vals + [gamma]
temp = main_func(A, U, Z, lam, fun_num=fun_num)
rmse = np.sqrt((main_func(A, U, Z, lam, fun_num=0)*2)/A.size)
train_rmse = train_rmse + [rmse]
if np.isnan(temp):
raise
if np.isnan(rmse):
raise
print('CoCaIn WARM BPG fun val is '+ str(temp)+ ' iter ' + str(i) + ' RMSE ' + str(rmse))
print('Lyapunov function is '+ str(((1/uL_est)*temp) +breg( U, Z, prev_U, prev_Z, \
breg_num=breg_num,c_1=c_1,c_2=c_2)))
func_vals = func_vals + [temp]
lyapunov_vals = lyapunov_vals + [((1/uL_est)*temp) +breg( U, Z, prev_U, prev_Z, \
breg_num=breg_num,c_1=c_1,c_2=c_2)]
time_vals = time_vals + [time.time()]
print(filename)
np.savetxt(filename,np.c_[func_vals,time_vals, lyapunov_vals, uL_est_vals, lL_est_vals, \
gamma_vals, train_rmse])