-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
392 lines (302 loc) · 12.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from collections import defaultdict
from index_map import IndexMap
import utils
from trie import Trie
from queue import Queue
import numpy as np
import argparse
import time
class LM:
"""Represents the main entry point of the language model"""
def __init__(self, data_train, vocabs_file=None):
self.data_train = data_train
self.corpus = IndexMap()
if vocabs_file:
self.vocabs = IndexMap(vocabs_file)
self.running_wrds_num = 0
self.sent_num = 0
self.sent_len_sum = 0
self.sent_len_to_freq = defaultdict(int)
self.prepare_lm()
self.avg_sent_len = (1.0 * self.sent_len_sum)/self.sent_num
self.unk_cnt = 0
self.oov = 0.0 # out-of-vocabulary rate
# NOTE: The purpose of creating this dict of roots is only
# for the following experiment: Comparing the computation of bigrams
# and unigrams probs using trigram counts vs the computation of bigrams
# and unigrams probs using their own tries. You should not create multiple
# trie trees usually since you have prefix information
self.ngrams_root = {} # contains the root of (key)-gram trie
self.b = {} # contain b discounting params of (gram_rank -> b)
def prepare_lm(self):
"""Prepare the language model for analysis and computations"""
print('Reading corpus for analysis...')
with open(self.data_train, 'r') as read_corpus:
for line in read_corpus:
words = line.strip().split(' ')
sent_len = len(words)
self.sent_len_sum += sent_len
self.sent_len_to_freq[sent_len] += 1
self.sent_num += 1
for wrd in words:
self.corpus.add_wrd(wrd)
self.running_wrds_num += 1
################################ Ex1 (a)-(b)-(c) ################################
def show_corpus_analysis(self):
"""Show corpus data analysis"""
print('Size of vocabulary: %d' % self.vocabs.get_num_of_words())
print('Number of running words: %d' % self.running_wrds_num)
print('Number of sentences: %d' % self.sent_num)
print('Average sentence length: %.2f' % self.avg_sent_len)
utils.plot_kv_iterable(self.sent_len_to_freq,
xlabel='Sentence length',
ylabel='Frequency',
xticks=5)
################################ Ex2 (a) ################################
def get_word_freq_dict(self):
"""Return a dict where key is a word and value is it's frequency
It transforms the wrd_freq dict from index-based key to word-based key
so that it can be used for retrieving the top k frequent words
:return: A dict, word to freq mapping
"""
res = {}
for idx, freq in self.corpus.get_wrd_freq_items():
wrd = self.corpus.get_wrd_by_idx(idx)
res[wrd] = freq
return res
@staticmethod
def get_top_10_freq_words(res):
"""Return the top 10 frequent words
:return: A list, top 10 frequent words
"""
return utils.get_top_k_freq_items(res, k=10)
############################# Ex2 (b)-(c)-(d)-(e) ####################################
def get_corpus_tokens(self, vocabulary):
"""Read corpus and store the tokens in a list
If with_unk is True, then unk_cnt is used to store the number
of OOV words to compute it's rate later
:param vocabulary: IndexMap, either corpus or vocabs
:return: A list of word tokens with start and end symbols
"""
tokens = []
start_id = vocabulary.get_start_id()
end_id = vocabulary.get_end_id()
unk_id = vocabulary.get_unk_id()
with open(self.data_train, 'r') as read_corpus:
for line in read_corpus:
sent = line.strip().split(' ')
tokens.append(start_id)
for wrd in sent:
idx = vocabulary.get_idx_by_wrd(wrd)
if idx == unk_id:
self.unk_cnt += 1
tokens.append(idx)
tokens.append(end_id)
return tokens
def generate_ngrams(self, n, vocabulary):
"""Generate ngrams from the given vocabulary (corpus or vocabs)
and store them in a Trie data structure
:param n: An integer, the rank of the grams that are generated
:param vocabulary: An IndexMap, either corpus or vocabs
:return: A Trie representing the ngrams
"""
start_id = vocabulary.get_start_id()
end_id = vocabulary.get_end_id()
unk_id = vocabulary.get_unk_id()
print('Generating %d-grams from %s' % (n, 'corpus' if vocabulary == self.corpus else 'vocabulary'))
self.ngrams_root[n] = Trie()
with open(self.data_train, 'r') as read_corpus:
for line in read_corpus:
sent = line.strip().split(' ')
ngram = [start_id]
for wrd in sent:
if len(ngram) == n:
self.ngrams_root[n].add_ngram(ngram)
ngram = ngram[1:]
idx = vocabulary.get_idx_by_wrd(wrd)
if idx == unk_id:
self.unk_cnt += 1
ngram.append(idx)
if len(ngram) == n:
self.ngrams_root[n].add_ngram(ngram)
ngram = ngram[1:]
ngram.append(end_id)
self.ngrams_root[n].add_ngram(ngram)
print('%d-grams are now stored in a Trie' % n)
if vocabulary != self.corpus:
self.oov = (self.unk_cnt / self.running_wrds_num) * 100.0
print('OOV rate: %.02f %%' % self.oov)
def extract_ngrams_and_freq(self, n, vocabulary):
"""Extract ngrams and their frequencies, display top 10 frequent ngrams,
plot the count of counts distribution
:param n: An integer, the rank of the gram
:param vocabulary: An indexMap, either corpus or vocabs
"""
if n not in self.ngrams_root:
self.generate_ngrams(n, vocabulary)
print('Extracting %d-grams with their frequencies using %s' % \
(n, 'corpus' if vocabulary == self.corpus else 'vocabulary'))
res = self.ngrams_root[n].bfs(n)
print('Extraction is done.')
if n not in self.b:
self.compute_b(n, vocabulary=self.corpus)
print('Discounting parameters:')
for k, v in self.b.items():
print('b_{} = {}'.format(k, v))
return res
def get_top_10_ngram_freq(self, n, vocabulary):
"""Return the top 10 frequent ngrams
:param res: A dict, keys are ngrams and values are counts
:return: A list of top 10 frequent ngrams
"""
top_10_ngrams = utils.get_top_k_freq_items(self.extract_ngrams_and_freq(n, vocabulary), k=10)
# map to words
res = []
for kv in top_10_ngrams:
ngram_wrds = []
for idx in kv[0]:
ngram_wrds.append(vocabulary.get_wrd_by_idx(idx))
res.append((ngram_wrds, kv[1]))
return res
############################# Ex3 ####################################
def get_summed_counts(self, n, vocabulary):
"""Calculate bi-/uni- grams from trigrams and compare to directly extracted bi-/uni- grams
:param n: An integer, the rank of the source n-gram
:param vocabulary: An indexMap, either corpus or vocabs
"""
assert n >= 3, 'n should be at least 3'
res_trigram = self.extract_ngrams_and_freq(n, vocabulary)
res_bi = self.extract_ngrams_and_freq(n-1, vocabulary)
res_uni = self.extract_ngrams_and_freq(n-2, vocabulary)
summed_bigrams = defaultdict(int)
summed_unigrams = defaultdict(int)
for k, v in res_trigram.items():
summed_bigrams[k[1:]] += v
summed_unigrams[k[-1]] += v
print("bigram difference: ")
for k, v in res_bi.items():
if v != summed_bigrams[k]:
print("bigram: {} extracted value: {} summed value: {}".format(k, v ,summed_bigrams[k]))
print("unigram difference: ")
for k, v in res_uni.items():
if v != summed_unigrams[k]:
print("unigram: {} extracted value: {} summed value: {}".format(k, v, summed_unigrams[k]))
########################### Ex4 ##################################
def compute_b(self, n, vocabulary):
"""Computes the discounting parameters for up to n-gram
e.g if n = 2, then it will compute b_uni, and b_bi
:param n: An integer, the rank of gram
:param vocabulary: An IndexMap, either corpus or vocabs
"""
if n in self.b: return
print('Computing discounting parameters...')
# ngrams are not added to the trie yet
if n not in self.ngrams_root:
self.generate_ngrams(n, vocabulary)
q = Queue()
q.put(self.ngrams_root[n]) # add root
for i in range(n):
singeltons = 0
doubletons = 0
next_q = Queue()
while not q.empty():
u = q.get()
for idx, child in u.get_children().items():
next_q.put(child)
if child.get_freq() == 1:
singeltons += 1
elif child.get_freq() == 2:
doubletons += 1
self.b[i+1] = (singeltons/(singeltons + 2.0 * doubletons))
q = next_q
def compute_prob(self, w, h, n):
"""Computes the bigram probability p(w|h) using absolute discounting with
interpolation where h is word history
:param w: An integer, the index of word w
:param h: A list containing the indexes of word history
:param n: An integer, the rank of the grams
:return: A float, p(w|h)
"""
# backoff to unigram (base case)
if len(h) == 0:
prob = self.b[1]
prob *= self.ngrams_root[n].get_num_of_children() # W - N_0(.)
prob /= float(self.vocabs.get_num_of_words() * self.ngrams_root[n].get_freq()) # W * N
w_node = self.ngrams_root[n].get_ngram_last_node([w])
if w_node is not None:
w_freq = w_node.get_freq()
prob += max(float(w_freq - self.b[1]) / self.ngrams_root[n].get_freq(), 0.0)
return prob
h_node = self.ngrams_root[n].get_ngram_last_node(h)
# history is not found so backoff
if h_node is None:
return self.compute_prob(w, h[1:], n)
prob = self.b[len(h)+1]
prob *= float(h_node.get_num_of_children()) / h_node.get_freq() # (W - N_0(v,.))/N(v)
prob *= self.compute_prob(w, h[1:], n) # recursively backoff
# add the first term of the interpolation
w_node = h_node.get_ngram_last_node([w])
if w_node is not None:
w_h_freq = w_node.get_freq()
prob += max(float(w_h_freq - self.b[len(h)+1]) / h_node.get_freq(), 0.0)
return prob
def verify_normalization(self, n):
"""Verify the normalization of bigram and unigram probabilities
:return: True if the probabilities are normalized and False otherwise
"""
print('Verifying probability normalization...')
bigram_probs = 0.0
unigram_probs = 0.0
for w in range(0, self.vocabs.get_num_of_words()):
bigram_probs += self.compute_prob(w, [10], n) # any word for history
unigram_probs += self.compute_prob(w, [], n)
print('bigram_probs: {}, unigram_probs: {}'.format(bigram_probs, unigram_probs))
return abs(1.0 - bigram_probs) <= 1e-02 and abs(1.0 - unigram_probs) <= 1e-02
########################### Ex5 ##################################
def perplexity(self, corpus_file, n):
"""Compute the perplexity of the language model on the given corpus
using n-grams
:param corpus_file: A string, the path of the corpus
:param n: An integer, the rank of the grams to be used for computing PP
:return: A float, perplexity of the LM
"""
print('Computing model perplexity...')
LL = 0.0
norm = 0
with open(corpus_file, 'r') as test_corpus:
for line in test_corpus:
sent = line.strip().split()
h = [self.corpus.get_start_id()]
for wrd in sent:
w = self.corpus.get_idx_by_wrd(wrd)
if len(h) == n-1:
prob = self.compute_prob(w, h, n)
LL += np.log(prob)
h.append(w)
h = h[1:]
else:
h.append(w)
LL += np.log(self.compute_prob(self.corpus.get_end_id(), h, n))
norm += len(sent)+1
return np.exp(-LL/norm)
#######################################################################
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train_file', type=str, default='./data/train.corpus',
help='training data path')
parser.add_argument('--vocab_file', type=str, default='./data/vocabulary',
help='vocabulary file path')
parser.add_argument('--test_file', type=str, default='./data/test.corpus',
help='test file.')
parser.add_argument('--gram_rank', type=int, default=2,
help='e.g 2 for bigram')
args = parser.parse_args()
start = time.time()
lm = LM(args.train_file, args.vocab_file)
lm.extract_ngrams_and_freq(n=args.gram_rank, vocabulary=lm.corpus)
# if lm.verify_normalization(args.gram_rank):
# print('Probabilities are normalized!')
# else:
# print('Probabilities are not normalized!')
print('Test PP: {}'.format(lm.perplexity(corpus_file=args.test_file, n=args.gram_rank)))
print('Execution time: %.3f min' % ((time.time()-start)/60))