-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_model.py
111 lines (81 loc) · 3.2 KB
/
final_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, UpSampling2D
from keras.models import Model, model_from_json
from keras.datasets import mnist
import numpy as np
from keras.callbacks import TensorBoard
import gzip
from keras.utils.data_utils import get_file
from six.moves import cPickle
import hickle as hkl
import sys
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split
from keras import backend as K
from keras.utils import np_utils
from PIL import Image
import matplotlib.pyplot as plt
import scipy.misc
import h5py
nb_channels = 1
kernel = 3
rows, cols = 596, 92
nb_epoch = 2
batch_size = 4
def load_data():
print("loading dataset................")
with h5py.File('dataset_slide.h5', 'r') as hf:
data = hf['dataset'][:]
print(data.shape)
doc = data[0].reshape(len(data[0]), nb_channels, rows, cols)
mask = data[1].reshape(len(data[1]), nb_channels, rows, cols)
return doc, mask
white, black = load_data()
# white, black = shuffle(white, black, random_state=100)
x_train, x_test, y_train, y_test = train_test_split(white, black, test_size = 0.2, random_state = 100)
# print(x_train.shape)
# img_arr = x_train[-1, :, :, :]
# print(img_arr.shape)
# img = img_arr.reshape((512,512))
# img = Image.fromarray(img, 'L')
# img.save('test.png')
print ("------------")
print ("training on {n} images".format(n=len(x_train)))
print ("testing on {n} images".format(n=len(x_test)))
print ("------------")
input_img = Input(shape=(nb_channels, rows, cols))
print ("input image shape: 1x596x92")
print ("------------")
x = Convolution2D(32, kernel, kernel, activation='relu', border_mode='same', name="c1")(input_img)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(32, kernel, kernel, activation='relu', border_mode='same', name="c2")(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(64, kernel, kernel, activation='relu', border_mode='same', name="c3")(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(128, kernel, kernel, activation='relu', border_mode='same', name="c4")(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(256, kernel, kernel, activation='relu', border_mode='same', name="c5")(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(256, kernel, kernel, activation='relu', border_mode='same', name="c6")(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Flatten()(x)
x = Dense(64)(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Dense(nb_class)(x)
final = Activation('sigmoid')(x)
model = Model(input_img, final)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
# model.compile(loss="categorical_crossentropy", optimizer="sgd")
autoencoder.summary()
autoencoder.fit(x_train, y_train,
nb_epoch=nb_epoch,
batch_size=batch_size,
shuffle=True,
validation_data=(x_test, y_test),
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
# date localizing test
# serialize model to JSON
model_json = autoencoder.to_json()
with open("localizing_slide.json", "w") as json_file:
json_file.write(model_json)
autoencoder.save_weights('localizing_slide.h5')