data
in config file is the variable for data configuration, to define the arguments that are used in datasets and dataloaders.
Here is an example of data configuration:
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type='ADE20KDataset',
data_root='data/ade/ADEChallengeData2016',
img_dir='images/training',
ann_dir='annotations/training',
pipeline=train_pipeline),
val=dict(
type='ADE20KDataset',
data_root='data/ade/ADEChallengeData2016',
img_dir='images/validation',
ann_dir='annotations/validation',
pipeline=test_pipeline),
test=dict(
type='ADE20KDataset',
data_root='data/ade/ADEChallengeData2016',
img_dir='images/validation',
ann_dir='annotations/validation',
pipeline=test_pipeline))
-
train
,val
andtest
: Theconfig
s to build dataset instances for model training, validation and testing by usingbuild and registry
mechanism. -
samples_per_gpu
: How many samples per batch and per gpu to load during model training, and thebatch_size
of training is equal tosamples_per_gpu
times gpu number, e.g. when using 8 gpus for distributed data parallel trainig andsamples_per_gpu=4
, thebatch_size
is8*4=32
. If you would like to definebatch_size
for testing and validation, please usetest_dataloaser
andval_dataloader
with mmseg >=0.24.1. -
workers_per_gpu
: How many subprocesses per gpu to use for data loading.0
means that the data will be loaded in the main process.
Note: samples_per_gpu
only works for model training, and the default setting of samples_per_gpu
is 1 in mmseg when model testing and validation (DO NOT support batch inference yet).
Note: before v0.24.1, except train
, val
test
, samples_per_gpu
and workers_per_gpu
, the other keys in data
must be the
input keyword arguments for dataloader
in pytorch, and the dataloaders used for model training, validation and testing have the same input arguments.
In v0.24.1, mmseg supports to use train_dataloader
, test_dataloaser
and val_dataloader
to specify different keyword arguments, and still supports the overall arguments definition but the specific dataloader setting has a higher priority.
Here is an example for specific dataloader:
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
shuffle=True,
train=dict(type='xxx', ...),
val=dict(type='xxx', ...),
test=dict(type='xxx', ...),
# Use different batch size during validation and testing.
val_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False),
test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False))
Assume only one gpu used for model training and testing, as the priority of the overall arguments definition is low, the batch_size
for training is 4
and dataset will be shuffled, and batch_size for testing and validation is 1
, and dataset will not be shuffled.
To make data configuration much clearer, we recommend use specific dataloader setting instead of overall dataloader setting after v0.24.1, just like:
data = dict(
train=dict(type='xxx', ...),
val=dict(type='xxx', ...),
test=dict(type='xxx', ...),
# Use specific dataloader setting
train_dataloader=dict(samples_per_gpu=4, workers_per_gpu=4, shuffle=True),
val_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False),
test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False))
Note: in model training, default values in the script of mmseg for dataloader are shuffle=True, and drop_last=True
,
in model validation and testing, default values are shuffle=False, and drop_last=False
The simplest way is to convert your dataset to organize your data into folders.
An example of file structure is as followed.
├── data
│ ├── my_dataset
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{img_suffix}
│ │ │ │ ├── yyy{img_suffix}
│ │ │ │ ├── zzz{img_suffix}
│ │ │ ├── val
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{seg_map_suffix}
│ │ │ │ ├── yyy{seg_map_suffix}
│ │ │ │ ├── zzz{seg_map_suffix}
│ │ │ ├── val
A training pair will consist of the files with same suffix in img_dir/ann_dir.
If split
argument is given, only part of the files in img_dir/ann_dir will be loaded.
We may specify the prefix of files we would like to be included in the split txt.
More specifically, for a split txt like following,
xxx
zzz
Only
data/my_dataset/img_dir/train/xxx{img_suffix}
,
data/my_dataset/img_dir/train/zzz{img_suffix}
,
data/my_dataset/ann_dir/train/xxx{seg_map_suffix}
,
data/my_dataset/ann_dir/train/zzz{seg_map_suffix}
will be loaded.
:::{note}
The annotations are images of shape (H, W), the value pixel should fall in range [0, num_classes - 1]
.
You may use 'P'
mode of pillow to create your annotation image with color.
:::
MMSegmentation also supports to mix dataset for training. Currently it supports to concat, repeat and multi-image mix datasets.
We use RepeatDataset
as wrapper to repeat the dataset.
For example, suppose the original dataset is Dataset_A
, to repeat it, the config looks like the following
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)
There 2 ways to concatenate the dataset.
-
If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following.
-
You may concatenate two
ann_dir
.dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = ['anno_dir_1', 'anno_dir_2'], pipeline=train_pipeline )
-
You may concatenate two
split
.dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = 'anno_dir', split = ['split_1.txt', 'split_2.txt'], pipeline=train_pipeline )
-
You may concatenate two
ann_dir
andsplit
simultaneously.dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = ['anno_dir_1', 'anno_dir_2'], split = ['split_1.txt', 'split_2.txt'], pipeline=train_pipeline )
In this case,
ann_dir_1
andann_dir_2
are corresponding tosplit_1.txt
andsplit_2.txt
.
-
-
In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.
dataset_A_train = dict() dataset_B_train = dict() data = dict( imgs_per_gpu=2, workers_per_gpu=2, train = [ dataset_A_train, dataset_B_train ], val = dataset_A_val, test = dataset_A_test )
A more complex example that repeats Dataset_A
and Dataset_B
by N and M times, respectively, and then concatenates the repeated datasets is as the following.
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict(
type='Dataset_A',
...
pipeline=train_pipeline
)
)
dataset_A_val = dict(
...
pipeline=test_pipeline
)
dataset_A_test = dict(
...
pipeline=test_pipeline
)
dataset_B_train = dict(
type='RepeatDataset',
times=M,
dataset=dict(
type='Dataset_B',
...
pipeline=train_pipeline
)
)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train = [
dataset_A_train,
dataset_B_train
],
val = dataset_A_val,
test = dataset_A_test
)
We use MultiImageMixDataset
as a wrapper to mix images from multiple datasets.
MultiImageMixDataset
can be used by multiple images mixed data augmentation
like mosaic and mixup.
An example of using MultiImageMixDataset
with Mosaic
data augmentation:
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='RandomMosaic', prob=1),
dict(type='Resize', img_scale=(1024, 512), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
train_dataset = dict(
type='MultiImageMixDataset',
dataset=dict(
classes=classes,
palette=palette,
type=dataset_type,
reduce_zero_label=False,
img_dir=data_root + "images/train",
ann_dir=data_root + "annotations/train",
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
]
),
pipeline=train_pipeline
)