-
Notifications
You must be signed in to change notification settings - Fork 17
/
kws_align.py
518 lines (420 loc) · 14.6 KB
/
kws_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# Copyright (c) Alibaba, Inc. and its affiliates.
#
# Align by keyword spotting results.
# 2022-03-09 yueyue.nyy
# 2022-12-09 bin.xue updated
import argparse
import os
import sys
import tempfile
from concurrent import futures
import numpy as np
import re
import traceback
from modelscope.utils.audio.audio_utils import update_conf
from scipy.io import wavfile
from tqdm import tqdm
# no. of threads
NUM_THS = 1
# audio repeats
TRAIN_REPEAT = 2
# data block size (second)
BLOCK_SIZE = 0.02
# left offset (second)
L_OFFSET = -0.1
# label gain
LABEL_GAIN = 100.0
# default sample rate
FS = 16000
# fbank size
FBANK_SIZE = 40
FE_EXE_PATH = 'bin/SoundConnect'
def listFilesRec(path, suffix, filelist):
if os.path.isfile(path):
ext = os.path.splitext(path)[1].replace('.', '')
if ext in suffix:
filelist.append(path)
else:
for f in os.listdir(path):
listFilesRec(os.path.join(path, f).replace('\\', '/'), suffix, filelist)
return filelist
def listFiles(base, suffix):
suffix2 = []
for ext in suffix:
suffix2.append(ext.replace('.', ''))
filelist = []
filelist = listFilesRec(base, suffix2, filelist)
return filelist
def loadAudio(fin):
""" load audio from file
fin: input file path
return: datatype, loaded data
"""
fmt = os.path.splitext(fin)[1]
if fmt == '.wav':
dtype = 'int16'
fs, data = wavfile.read(fin)
elif fmt == '.pcm':
dtype = 'int16'
data = np.fromfile(fin, dtype)
elif fmt == '.f32':
dtype = 'float32'
data = np.fromfile(fin, dtype)
else:
raise IOError('Failed to load audio: ' + fin)
return dtype, data
def saveAudio(fout, data):
""" save audio into file
fout: output file path
data: audio data
"""
fmt = os.path.splitext(fout)[1]
if fmt == '.wav':
wavfile.write(fout, FS, data)
elif fmt == '.pcm':
data.tofile(fout)
elif fmt == '.f32':
data.tofile(fout)
else:
raise IOError('Failed to save audio: ' + fout)
def loadKeywords(fconf):
""" parse keywords and corresponding labels
fconf: conf file path
return: {keyword: [labels]}
"""
with open(fconf, 'r', encoding='UTF-8') as fd:
lines = fd.readlines()
begindesc = False
kwdict = {}
for ts in lines:
ts = ts.strip()
if ts.startswith('#'):
continue
if len(ts) <= 0:
continue
if begindesc:
m = re.match('.+\s*=\s*', ts)
if m is not None:
break
# parse keywords and labels
sts = ts.split(',')
kw = sts[0]
labels = list(map(int, sts[1:]))
kwdict.update({kw: labels})
if ts.startswith('kws_decode_desc ='):
begindesc = True
return kwdict
def createFeIn(fin):
""" generate temp file as front-end input
fin: original audio file
return: tmp file path, padded data
"""
# load audio file
dtype, data = loadAudio(fin)
# pad audio
dataout = np.zeros((datapad.shape[0] + data.shape[0]) * TRAIN_REPEAT, dtype)
for i in range(TRAIN_REPEAT):
offset = (datapad.shape[0] + data.shape[0]) * i
dataout[offset:offset + datapad.shape[0]] = datapad[:]
offset += datapad.shape[0]
dataout[offset:offset + data.shape[0]] = data[:]
# output audio
name = os.path.splitext(os.path.split(fin)[1])[0]
tmpfd, tmppath = tempfile.mkstemp(
prefix='fein_' + name + '_', suffix=os.path.splitext(fin)[1], dir=baseout)
os.close(tmpfd)
saveAudio(tmppath, dataout)
return tmppath, dataout
def applyFE(fconf, fin):
""" apply front-end
fconf: fe conf path
fin: input file path
return: feout, stdout, stderr file path
"""
name = os.path.splitext(os.path.split(fin)[1])[0]
feoutpath = os.path.join(baseout, name + '_feout.wav')
stdoutpath = os.path.join(baseout, name + '_stdout.txt')
stderrpath = os.path.join(baseout, name + '_stderr.txt')
# call fe
cmd = FE_EXE_PATH + ' ' + fconf
cmd += ' ' + fin + ' ' + feoutpath + ' 1>' + stdoutpath + ' 2>' + stderrpath
retval = 0
try:
retval = os.system(cmd)
except BaseException:
raise IOError('Failed to apply fe: ' + str(retval))
if retval == 0:
return feoutpath, stdoutpath, stderrpath
else:
raise IOError('Failed to apply fe: ' + str(retval))
def updateToken(stseq, stin, token):
""" update token
stseq: state sequence to be detected
stin: input state
token: current token index, -1 means final state
return: output token index, -1 means final state
"""
if token < -1:
token = -1
elif token > len(stseq) - 1:
token = len(stseq) - 1
if 0 <= token < len(stseq) - 1:
# current is middle state
if stin == stseq[token + 1]:
token += 1
elif stin != stseq[token]:
token = -1
elif token == len(stseq) - 1:
# current is the last state
if stin != stseq[token]:
token = -1
# from final move to the first state
if token == -1 and stin == stseq[0]:
token = 0
return token
def detectStrictBoundary(bestpath, offset, length, stseq):
""" detect strict keyword boundary, keyword label order considered
bestpath: decode path
offset: lookup offset
length: lookup length
stseq: keyword label sequence
return: kwoffset: keyword offset, -1 means failed
kwlen: keyword length
"""
# detect strict boundary
token = -1
kwoffset = -1
kwlen = 0
kwexists = False
for tau in range(offset, offset + length):
token2 = updateToken(stseq, bestpath[tau], token)
if token != 0 and token2 == 0:
kwoffset = tau
elif token2 == len(stseq) - 1:
kwlen = tau - kwoffset + 1
kwexists = True
token = token2
if not kwexists:
return -1, 0
else:
return kwoffset, kwlen
def detectBoundary(bestpath, stseq):
""" detect keyword boundary
bestpath: decode path
stseq: keyword label list
return: augpath: boundary augmented path, None means failed
offset: keyword offset
len: keyword length
relax: no. of relaxed labels at the beginning
"""
# find keyword label boundary returned by the event log
taustart = 0
tauend = 0
for tau in range(len(bestpath) - 2, -1, -1):
if bestpath[tau + 1] == 0 and bestpath[tau] != 0:
tauend = tau
elif bestpath[tau + 1] != 0 and bestpath[tau] == 0:
taustart = tau + 1
break
if bestpath[-1] != 0:
tauend = len(bestpath) - 1
taulen = tauend - taustart + 1
if taulen <= 0:
return None, -1, 0, 0
# detect strict boundary
kwoffset, kwlen = detectStrictBoundary(bestpath, taustart, taulen, stseq)
if kwoffset <= 0:
kwoffset, kwlen = detectStrictBoundary(
bestpath, taustart, taulen, stseq[:len(stseq) - 1])
if kwoffset <= 0:
kwoffset, kwlen = detectStrictBoundary(
bestpath, taustart, taulen, stseq[1:])
if kwoffset <= 0:
return None, -1, 0, 0
# boundary relax
count = [0] * len(stseq)
for tau in range(kwoffset, kwoffset + kwlen):
for i in range(len(stseq)):
if bestpath[tau] == stseq[i]:
count[i] += 1
augpath = bestpath.copy()
# duration[0] mismatch considered
relax = taustart - kwoffset
if count[0] < count[1]:
for i in range(count[1] - count[0]):
kwoffset -= 1
kwlen += 1
relax += 1
if kwoffset < 0:
augpath.insert(0, stseq[0])
kwoffset = 0
else:
augpath[kwoffset] = stseq[0]
if count[-1] < count[-2]:
for i in range(count[-2] - count[-1]):
if kwoffset + kwlen >= len(augpath):
augpath.append(stseq[-1])
else:
augpath[kwoffset + kwlen] = stseq[-1]
kwlen += 1
return augpath, kwoffset, kwlen, relax
def alignByKWS(forigin, datarpt, flog):
""" align one file by kws log
forigin: original audio file
datarpt: padded data
flog: kws log file path
return: aligned file path, or None if not waked
"""
# load kws log
with open(flog, 'r', encoding='UTF-8') as fd:
lines = fd.readlines()
kw = None
duration = None
confidence = 0.0
bestpath = None
pathlidx = -1
usethiskw = False
for lidx, ts in enumerate(lines):
ts = ts.strip()
m = re.match(
'\[detected\s+(\d+)\], kw: (.+), spot: (.+), bestend: (.+), duration: \[(.+)-(.+)\], confidence: (.+), bestch: (\d+)',
ts)
if m is not None:
tmpc = float(m.group(7))
if tmpc > confidence:
kw = m.group(2)
duration = [float(m.group(5)), float(m.group(6))]
confidence = tmpc
usethiskw = True
else:
usethiskw = False
if ts.startswith('best path:') and usethiskw:
pathlidx = lidx + 1
if lidx == pathlidx:
bestpath = list(map(int, ts.split()))
# not waked
if duration is None:
return None
# find decode path boundary
augpath, labeloffset, labellen, labelrelax = detectBoundary(bestpath, kwdict[kw])
if augpath is None:
return None
# determine audio boundary
if os.path.splitext(forigin)[1] == '.f32':
tstart = max(
int((duration[0] - labelrelax * BLOCK_SIZE * 2 + L_OFFSET) / BLOCK_SIZE),
0) * FBANK_SIZE
lsize = FBANK_SIZE * 2
else:
tstart = max(
int(FS * (duration[0] - labelrelax * BLOCK_SIZE * 2 + L_OFFSET)),
0)
lsize = int(FS * BLOCK_SIZE * 2)
uttlen = min(lsize * labellen, datarpt.shape[0] - tstart)
# copy wave data
data2 = np.zeros((uttlen, 2), dtype=dtypepad)
data2[:, 0] = datarpt[tstart:tstart + uttlen]
# copy label
label = augpath[labeloffset:labeloffset + labellen]
for li in range(len(label)):
if dtypepad == 'float32':
val = label[li] / LABEL_GAIN
else:
val = int(32768.0 * label[li] / LABEL_GAIN)
data2[lsize * li:lsize * (li + 1), 1] = val
# output file
nameout, extout = os.path.splitext(os.path.split(forigin)[1])
if extout == '.pcm':
extout = '.wav'
dirout = os.path.join(baseout, kw)
if not os.path.exists(dirout):
os.mkdir(dirout)
fout = os.path.join(dirout, nameout + ('_confidence_{:0.2f}' + extout).format(confidence))
if os.path.exists(fout):
tmpfd, fout = tempfile.mkstemp(
prefix=nameout + '_', suffix=('_confidence_{:0.2f}' + extout).format(confidence), dir=dirout)
os.close(tmpfd)
saveAudio(fout, data2)
return fout
def align(conf_path, fin):
"""
align 1 file
fin: original audio file
"""
feinpath = None
feoutpath = None
stdoutpath = None
stderrpath = None
try:
# generate fe input
feinpath, feindata = createFeIn(fin)
# apply fe
feoutpath, stdoutpath, stderrpath = applyFE(conf_path, feinpath)
# align
fout = alignByKWS(fin, feindata, stdoutpath)
return fin, fout
except IOError as e:
traceback.print_exc()
return fin, f'Error: {e}'
finally:
if feinpath and os.path.isfile(feinpath):
os.remove(feinpath)
if feoutpath and os.path.isfile(feoutpath):
os.remove(feoutpath)
if stdoutpath and os.path.isfile(stdoutpath):
os.remove(stdoutpath)
if stderrpath and os.path.isfile(stderrpath):
os.remove(stderrpath)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='KWS align script')
parser.add_argument('input', help='path of the audio list file or the directory storing audio files')
parser.add_argument('keyword_desc', help='the keyword description')
parser.add_argument('-m', '--model_txt', required=True, help='the path of model .txt file')
parser.add_argument('-o', '--out_dir', help='output directory, default: [input]-align')
parser.add_argument('-t', '--threads', help='parallel thread number, default: 1', type=int)
args = parser.parse_args()
threads = args.threads if args.threads else NUM_THS
basein = args.input
if args.out_dir:
baseout = args.out_dir
else:
if basein[-1] == '/':
basein = basein[:-1]
baseout = basein + '-align'
os.makedirs(baseout)
script_path = os.path.dirname(os.path.abspath(sys.argv[0]))
fpad = os.path.join(script_path, 'data', 'padding.wav')
# load padding audio
dtypepad, datapad = loadAudio(fpad)
my_conf = {'nummics': 1,
'numrefs': 0,
'numins': 1,
'validate_numouts': 1,
'kws_log_level': 3,
'kws_level': '0.0',
'kws_decode_desc': args.keyword_desc,
'kws_model': args.model_txt}
fe_conf_path = os.path.join(os.path.dirname(__file__), 'evaluate', 'conf', 'sc.conf')
tmpconfpath = os.path.join(baseout, 'tmp.conf')
update_conf(fe_conf_path, tmpconfpath, my_conf)
# load keywords and labels
kwdict = loadKeywords(tmpconfpath)
if os.path.isdir(basein):
fmt = os.path.splitext(fpad)[1]
if fmt == '.wav':
flist = listFiles(basein, ['.wav', '.pcm'])
elif fmt == '.f32':
flist = listFiles(basein, ['.f32'])
else:
raise ValueError(f'Unsupported file type!')
else:
with open(basein, 'r', encoding='UTF-8') as fd:
flist = fd.readlines()
tasks = []
with open(os.path.join(baseout, 'result.txt'), 'w') as result_f:
with futures.ThreadPoolExecutor(max_workers=threads) as executor:
for f in flist:
tasks.append(executor.submit(align, tmpconfpath, f))
for task in tqdm(futures.as_completed(tasks), total=len(tasks)):
result = task.result()
result_f.write(f'{result[0]}\t{result[1]}\n')