-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathcfd_parameters.c
188 lines (187 loc) · 7.17 KB
/
cfd_parameters.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/****************************************************************************
* ArtraCFD *
* <By Huangrui Mo> *
* Copyright (C) Huangrui Mo <huangrui.mo@gmail.com> *
* This file is part of ArtraCFD. *
* ArtraCFD is free software: you can redistribute it and/or modify it *
* under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
****************************************************************************/
/****************************************************************************
* Required Header Files
****************************************************************************/
#include "cfd_parameters.h"
#include <stdio.h> /* standard library for input and output */
#include <math.h> /* common mathematical functions */
#include <limits.h> /* sizes of integral types */
#include "cfd_commons.h"
#include "commons.h"
/****************************************************************************
* Static Function Declarations
****************************************************************************/
static void SetNodeNumber(Space *, Model *);
static void InitializeParameters(Time *, Space *, Model *);
/****************************************************************************
* Function definitions
****************************************************************************/
void ComputeParameters(Time *time, Space *space, Model *model)
{
SetNodeNumber(space, model);
InitializeParameters(time, space, model);
return;
}
/*
* Calculations are node based, global domain boundaries are aligned
* with node layers. On each dimension, for m inner cells, there are
* m + 1 node layers. 2D and 3D space are unified, a 2D space is
* equivalent to a non-zero thickness 3D space with two inner cells
* (three node layers) in the collapsed direction. These three node
* layers are treated as domain boundary, inner node, domain boundary
* respectively. Zero gradient condition need to be enforced on the
* collapsed dimensions. Using three rather than one node layers is to
* be compatible with the three-dimensional governing equations,
* especially the calculation of the diffusive fluxes.
*/
static void SetNodeNumber(Space *space, Model *model)
{
Partition *const part = &(space->part);
/* check and mark collapsed space */
part->collapse = COLLAPSEN;
if (0 == (part->m[Z] - 1)) {
part->collapse = COLLAPSEZ;
}
if (0 == (part->m[Y] - 1)) {
part->collapse = 2 * part->collapse + COLLAPSEY;
}
if (0 == (part->m[X] - 1)) {
part->collapse = 2 * part->collapse + COLLAPSEX;
}
/* set stencil width and ghost layers required by numerical scheme */
switch (model->sScheme) {
case WENOTHREE:
model->sL = -1; model->sR = 2; part->gl = 2;
break;
case WENOFIVE:
model->sL = -2; model->sR = 3; part->gl = 3;
break;
default:
break;
}
/*
* Number of ghost node layers of each spatial dimension.
* Note that the global boundary accounts for one ghost layer,
* except in the periodic boundary condition, in which the
* global boundary should be treated as normal node layers.
*/
for (int s = 0; s < DIMS; ++s) {
part->ng[s] = part->gl - 1;
}
/* adjust according to dimension collapse */
if (OPTSPLIT == model->multidim) {
switch (part->collapse) {
case COLLAPSEN:
break;
case COLLAPSEX:
part->ng[X] = 0;
break;
case COLLAPSEY:
part->ng[Y] = 0;
break;
case COLLAPSEZ:
part->ng[Z] = 0;
break;
case COLLAPSEXY:
part->ng[X] = 0;
part->ng[Y] = 0;
break;
case COLLAPSEXZ:
part->ng[X] = 0;
part->ng[Z] = 0;
break;
case COLLAPSEYZ:
part->ng[Y] = 0;
part->ng[Z] = 0;
break;
default:
break;
}
}
/* adjust for periodic boundary conditions */
for (int s = 0, p = PWB; s < DIMS; ++s, p = p + 2) {
if (PERIODIC == part->typeBC[p]) {
part->ng[s] = part->gl;
}
}
/* mesh and node number on each spatial dimension */
for (int s = 0; s < DIMS; ++s) {
/* ensure at least two inner cells per dimension */
part->m[s] = MaxInt(part->m[s], 2);
/* total number of nodes (including ghost nodes) */
part->n[s] = part->m[s] + 1 + 2 * part->ng[s];
}
return;
}
/*
* This function computes and initializes the values of necessary
* parameters, and performs the normalization of some parameters.
*/
static void InitializeParameters(Time *time, Space *space, Model *model)
{
Partition *const part = &(space->part);
Geometry *const geo = &(space->geo);
/* space */
for (int s = 0; s < DIMS; ++s) {
part->domain[s][MAX] = part->domain[s][MAX] / model->refL;
part->domain[s][MIN] = part->domain[s][MIN] / model->refL;
part->d[s] = (part->domain[s][MAX] - part->domain[s][MIN]) / (Real)(part->m[s]);
part->dd[s] = 1.0 / part->d[s];
}
part->tinyL = 1.0e-6 * MinReal(part->d[X], MinReal(part->d[Y], part->d[Z]));
part->tinyL = part->tinyL * part->tinyL; /* distance square based comparison */
/* time */
time->end = time->end * model->refV / model->refL;
if (0 >= time->stepN) {
time->stepN = INT_MAX;
}
time->dataC = time->restart;
for (int n = 0; n < NPROBE; ++n) {
if (0 >= time->dataN[n]) {
time->dataN[n] = 0;
}
if (0 >= time->dataW[n]) {
time->dataW[n] = INT_MAX;
}
}
/* geometry */
if (0 >= geo->sphN) {
geo->sphN = 0;
}
if (0 >= geo->stlN) {
geo->stlN = 0;
}
geo->totN = geo->sphN + geo->stlN;
/* model */
if (0 >= model->ibmLayer) {
model->ibmLayer = INT_MAX;
}
model->gamma = 1.4;
model->gasR = 287.058;
for (int s = 0; s < DIMS; ++s) {
model->g[s] = model->g[s] * model->refL / (model->refV * model->refV);
}
model->sState = model->gState; /* source state on if gravity on */
/* reference Mach number */
model->refMa = model->refV / sqrt(model->gamma * model->gasR * model->refT);
/* reference dynamic viscosity for viscosity normalization */
model->refMu = model->refMu / (model->refRho * model->refV * model->refL);
/*
* Now replace some parameters with general forms that are valid
* for both dimensional and nondimensional N-S equations, since
* dimensional forms can be seen as normalized by reference 1.
*/
model->gasR = 1.0 / (model->gamma * model->refMa * model->refMa);
model->cv = model->gasR / (model->gamma - 1.0);
return;
}
/* a good practice: end file with a newline */