-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathevaluate_v1_0.py
143 lines (115 loc) · 4.9 KB
/
evaluate_v1_0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from __future__ import print_function
from collections import Counter
import string
import re
import argparse
import json
import sys
import os
'''KorQuAD v1.0에 대한 공식 평가 스크립트 '''
'''본 스크립트는 SQuAD v1.1 평가 스크립트 https://rajpurkar.github.io/SQuAD-explorer/ 를 바탕으로 작성됨.'''
def normalize_answer(s):
def remove_(text):
''' 불필요한 기호 제거 '''
text = re.sub("'", " ", text)
text = re.sub('"', " ", text)
text = re.sub('《', " ", text)
text = re.sub('》', " ", text)
text = re.sub('<', " ", text)
text = re.sub('>', " ", text)
text = re.sub('〈', " ", text)
text = re.sub('〉', " ", text)
text = re.sub("\(", " ", text)
text = re.sub("\)", " ", text)
text = re.sub("‘", " ", text)
text = re.sub("’", " ", text)
return text
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(remove_(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
# F1 by character
prediction_Char = []
for tok in prediction_tokens:
now = [a for a in tok]
prediction_Char.extend(now)
ground_truth_Char = []
for tok in ground_truth_tokens:
now = [a for a in tok]
ground_truth_Char.extend(now)
common = Counter(prediction_Char) & Counter(ground_truth_Char)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_Char)
recall = 1.0 * num_same / len(ground_truth_Char)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def evaluate(dataset, predictions):
f1 = exact_match = total = 0
for article in dataset:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
total += 1
if qa['id'] not in predictions:
message = 'Unanswered question ' + qa['id'] + \
' will receive score 0.'
print(message, file=sys.stderr)
continue
ground_truths = list(map(lambda x: x['text'], qa['answers']))
prediction = predictions[qa['id']]
exact_match += metric_max_over_ground_truths(
exact_match_score, prediction, ground_truths)
f1 += metric_max_over_ground_truths(
f1_score, prediction, ground_truths)
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
return {'exact_match': exact_match, 'f1': f1}
def eval_during_train(args):
expected_version = 'KorQuAD_v1.0'
dataset_file = os.path.join(args.data_dir, args.predict_file)
prediction_file = os.path.join(args.output_dir, 'predictions_.json')
with open(dataset_file) as dataset_f:
dataset_json = json.load(dataset_f)
read_version = "_".join(dataset_json['version'].split("_")[:-1])
if (read_version != expected_version):
print('Evaluation expects ' + expected_version +
', but got dataset with ' + read_version,
file=sys.stderr)
dataset = dataset_json['data']
with open(prediction_file) as prediction_f:
predictions = json.load(prediction_f)
return evaluate(dataset, predictions)
if __name__ == '__main__':
expected_version = 'KorQuAD_v1.0'
parser = argparse.ArgumentParser(
description='Evaluation for KorQuAD ' + expected_version)
parser.add_argument('dataset_file', help='Dataset file')
parser.add_argument('prediction_file', help='Prediction File')
args = parser.parse_args()
with open(args.dataset_file) as dataset_file:
dataset_json = json.load(dataset_file)
read_version = "_".join(dataset_json['version'].split("_")[:-1])
if (read_version != expected_version):
print('Evaluation expects ' + expected_version +
', but got dataset with ' + read_version,
file=sys.stderr)
dataset = dataset_json['data']
with open(args.prediction_file) as prediction_file:
predictions = json.load(prediction_file)
print(json.dumps(evaluate(dataset, predictions)))