forked from cjy1992/gym-carla
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
55 lines (47 loc) · 2.02 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python
# Copyright (c) 2019: Jianyu Chen (jianyuchen@berkeley.edu).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import gym
import gym_carla
import carla
def main():
# parameters for the gym_carla environment
params = {
'number_of_vehicles': 100,
'number_of_walkers': 0,
'display_size': (512, 512),#256, # screen size of bird-eye render
'max_past_step': 1, # the number of past steps to draw
'dt': 0.1, # time interval between two frames
'discrete': False, # whether to use discrete control space
'discrete_acc': [-3.0, 0.0, 3.0], # discrete value of accelerations
'discrete_steer': [-0.2, 0.0, 0.2], # discrete value of steering angles
'continuous_accel_range': [-3.0, 3.0], # continuous acceleration range
'continuous_steer_range': [-0.3, 0.3], # continuous steering angle range
'ego_vehicle_filter': 'vehicle.lincoln*', # filter for defining ego vehicle
'port': 4000, # connection port
'town': 'Town03', # which town to simulate
'task_mode': 'random', # mode of the task, [random, roundabout (only for Town03)]
'max_time_episode': 1000, # maximum timesteps per episode
'max_waypt': 12, # maximum number of waypoints
'obs_range': 32, # observation range (meter)
'lidar_bin': 0.125, # bin size of lidar sensor (meter)
'd_behind': 12, # distance behind the ego vehicle (meter)
'out_lane_thres': 2.0, # threshold for out of lane
'desired_speed': 8, # desired speed (m/s)
'max_ego_spawn_times': 200, # maximum times to spawn ego vehicle
'display_route': True, # whether to render the desired route
'pixor_size': 64, # size of the pixor labels
'pixor': False, # whether to output PIXOR observation
}
# Set gym-carla environment
env = gym.make('carla-bev-v0', params=params)
obs = env.reset()
while True:
action = [2.0, 0.0]
obs,r,done,info = env.step(action)
if done:
obs = env.reset()
if __name__ == '__main__':
main()