Nighttime vehicle detection.
https://github.com/mozpp/NigDet
1, download dataset and model. 链接: https://pan.baidu.com/s/17AEdluJq0hOByEHuc6Hnsg 提取码: 6dqp
2, ./mscnn-master/examples/kitti_car/run_mscnn_detection.m
.
1, tools/blob1.m 获取候选灯光.
2, tools/blob_bbox.m: generate a txt file 'blob_stats.txt', to store feature and label for each blob_candi.
3, tools/crop_blob.m: crop each blob_candi according to 'blob_stats.txt', and store.
4, cd ./classify_pytorch
to train a classifier to classify blob.
4.1 run main.py to train.
4.2 run test.py to test and store result 'blob_crop_result.txt'.
5, save vehicle highlight mask.
5.1 run
tools/build_BlobDataset.m
ortools/build_BlobDataset_Ver2.m
to save classify result to txt 'blob_statsVer1.txt'.
5.2 runtools/settle_jan30.m
ortools/settle_.m
to store vehicle highlight mask.
6, tools/concat4ch.py
concat mask to original image.
7, follow mscnn-master
to compile caffe and generate training label file.
https://github.com/mozpp/mscnn-master
8, cd ./mscnn-master/examples/kitti_car/mscnn-p123s2-subcls3
, run trian_mscnn.sh
to train a model.