forked from libAtoms/pymatnest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ns_rng.py
executable file
·228 lines (215 loc) · 7.96 KB
/
ns_rng.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from __future__ import print_function
class NsRng:
def int_uniform(self, low, high):
raise("int_uniform not implemented")
def float_uniform(self, low, high, size=None):
raise("float_uniform not implemented")
def normal(self, std_dev, size=None):
raise("normal not implemented")
def shuffle_in_place(self, list):
raise("shuffle_in_place not implemented")
def seed_init(self, delta_seed=-1, comm=None):
raise("seed_init not implemented")
def seed_common(self):
raise("seed_common not implemented")
def seed_local(self):
raise("seed_local not implemented")
import numpy as np
class NsRngNumpy(NsRng):
def __init__(self, delta_seed=-1, comm=None):
if comm is None:
self.common_random_state = None
else:
if comm.rank == 0:
if delta_seed > 0:
np.random.seed(comm.size + 1 + delta_seed)
else:
np.random.seed()
self.common_random_state = np.random.get_state()
else:
self.common_random_state = None
self.common_random_state = comm.bcast(self.common_random_state, root=0)
if delta_seed > 0:
if comm is None:
np.random.seed(1 + delta_seed)
else:
np.random.seed(comm.rank + 1 + delta_seed)
else:
np.random.seed()
def int_uniform(self, low, high):
return np.random.randint(low,high)
def float_uniform(self, low, high, size=None):
return np.random.uniform(low, high, size)
def normal(self, std_dev, size=None):
return np.random.normal(0.0,std_dev, size)
def shuffle_in_place(self, list):
np.random.shuffle(list)
def switch_to_common(self):
if self.common_random_state is not None:
self.local_random_state = np.random.get_state()
np.random.set_state(self.common_random_state)
def switch_to_local(self):
if self.common_random_state is not None:
self.common_random_state = np.random.get_state()
np.random.set_state(self.local_random_state)
#class NsRngJulia(NsRng):
# def __init__(self, j):
# self.j=j
# def int_uniform(self, low, high):
# return self.j.rand(xrange(high-low))+low
# def float_uniform(self, low, high, size=None):
# if size is None:
# return self.j.rand()*(high-low)+low
# else:
# return self.j.rand(size)*(high-low)+low
# # def normal(std_dev):
# #
# def shuffle_in_place(self, list):
# list[:] = self.j.shuffle(list)
import random, sys
class NsRngInternal(NsRng):
def __init__(self, delta_seed=-1, comm=None):
if comm is None:
self.common_random_state = None
else:
if comm.rank == 0:
if delta_seed > 0:
random.seed(comm.size + 1 + delta_seed)
else:
random.seed()
self.common_random_state = random.getstate()
else:
self.common_random_state = None
self.common_random_state = comm.bcast(self.common_random_state, root=0)
if delta_seed > 0:
random.seed(comm.rank + 1 + delta_seed)
else:
random.seed()
def int_uniform(self, low, high):
return random.randint(low,high-1)
def float_uniform(self, low,high, size=None):
if size is None:
return random.uniform(low,high)
else:
out = np.zeros (size)
for x in np.nditer(out, op_flags=['readwrite']):
x[...] = random.uniform(low,high)
return out
def normal(self, std_dev, size=None):
if size is None:
return random.normalvariate(0.0, std_dev)
else:
out = np.zeros (size)
for x in np.nditer(out, op_flags=['readwrite']):
x[...] = random.normalvariate(0.0, std_dev)
return out
def shuffle_in_place(self, list):
random.shuffle(list)
def switch_to_common(self):
if self.common_random_state is not None:
self.local_random_state = random.getstate()
random.setstate(self.common_random_state)
def switch_to_local(self):
if self.common_random_state is not None:
self.common_random_state = random.getstate()
random.setstate(self.local_random_state)
def os_random_uint32(n, max):
seed = []
for i in range(n):
i_rv = struct.unpack("I",os.urandom(4))[0]
while i_rv == 0 or i_rv >= max:
i_rv = struct.unpack("I",os.urandom(4))[0]
seed.append(i_rv)
# import rngstream
import rngstream, ctypes, os, struct, math
class NsRngStream(NsRng):
def set_package_seed(self, delta_seed):
if delta_seed > 0:
seed = [ ctypes.c_ulong(delta_seed) ] * 6
else:
seed.extend(os_random_uint32(3, 4294967087))
seed.extend(os_random_uint32(3, 4294944443))
self.r.set_package_seed((ctypes.c_ulong*6)(*seed))
def __init__(self, delta_seed=-1, comm=None):
self.r = rngstream.RngStream()
self.set_package_seed(delta_seed)
seed = (ctypes.c_ulong * 6)()
if comm is None:
self.rng = self.r.create_stream()
self.l_rng = None
self.g_rng = None
else:
if comm.rank == 0:
self.g_rng = self.r.create_stream()
self.r.get_state(self.g_rng,seed)
seed_comm = comm.bcast(list(seed), root=0)
else:
seed_comm = None
seed_comm = comm.bcast(seed_comm, root=0)
seed = (ctypes.c_ulong * 6)(*seed_comm)
self.r.set_package_seed(seed)
self.g_rng = self.r.create_stream()
if comm.rank == 0:
self.l_rng = self.r.create_stream()
seed_new = (ctypes.c_ulong * 6)()
for i in range(1,comm.size):
t_rng = self.r.create_stream()
self.r.get_state(t_rng,seed_new)
comm.send(list(seed_new), i, tag=i)
else:
seed_new_comm = comm.recv(source=0, tag=comm.rank)
self.r.set_package_seed((ctypes.c_ulong * 6)(*seed_new_comm))
self.l_rng = self.r.create_stream()
self.rng = self.l_rng
if comm is None:
self.r.get_state(self.rng,seed)
print( "Initialized RngStream rng to ", list(seed))
else:
if comm.rank == 0:
self.r.get_state(self.g_rng,seed)
print( comm.rank, "Initialized RngStream g_rng to ", list(seed))
self.r.get_state(self.l_rng,seed)
print( comm.rank, "Initialized RngStream l_rng to ", list(seed))
self.saved_normal_rv = None
def switch_to_common(self):
if self.g_rng is not None:
self.rng = self.g_rng
self.saved_normal_rv = None
def switch_to_local(self):
if self.l_rng is not None:
self.rng = self.l_rng
self.saved_normal_rv = None
def int_uniform(self, low, high):
return self.r.int_uniform(self.rng, ctypes.c_int(low), ctypes.c_int(high-1) )
def float_uniform(self, low, high, size=None):
if size is None:
return self.r.float_uniform_01(self.rng) * (high-low)+low
else:
out = np.zeros(size)
for x in np.nditer(out, op_flags=['readwrite']):
x[...] = self.r.float_uniform_01(self.rng) * (high-low)+low
return out
def normal_variate(self, std_dev):
if self.saved_normal_rv is None:
rsq = 0.0
while rsq > 1.0 or rsq == 0.0:
v1 = 2.0*self.r.float_uniform_01(self.rng)-1.0
v2 = 2.0*self.r.float_uniform_01(self.rng)-1.0
rsq = v1*v1+v2*v2
fac = math.sqrt(-2.0*math.log(rsq)/rsq)
self.saved_normal_rv = v1*fac
return v2*fac
else:
rv = self.saved_normal_rv
self.saved_normal_rv = None
return rv
def normal(self, std_dev, size=None):
if size is None:
return self.normal_variate(std_dev)
else:
out = np.zeros(size)
for x in np.nditer(out, op_flags=['readwrite']):
x[...] = self.normal_variate(std_dev)
return out
def shuffle_in_place(self, list):
random.shuffle(list, lambda : self.r.float_uniform_01(self.rng) )