-
Notifications
You must be signed in to change notification settings - Fork 68
/
utils_test.py
executable file
·115 lines (100 loc) · 4.22 KB
/
utils_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python
import socket
import unittest
from math import ceil
import numpy as np
from utils import RunningStat, batch_iter, get_port_range
class TestUtils(unittest.TestCase):
# https://github.com/joschu/modular_rl/blob/master/modular_rl/running_stat.py
def test_running_stat(self):
for shp in ((), (3, ), (3, 4)):
li = []
rs = RunningStat(shp)
for i in range(5):
val = np.random.randn(*shp)
rs.push(val)
li.append(val)
m = np.mean(li, axis=0)
assert np.allclose(rs.mean, m)
if i == 0:
continue
# ddof=1 => calculate unbiased sample variance
v = np.var(li, ddof=1, axis=0)
assert np.allclose(rs.var, v)
def test_get_port_range(self):
# Test 1: if we ask for 3 ports starting from port 60000
# (which nothing should be listening on), we should get back
# 60000, 60001 and 60002
ports = get_port_range(60000, 3)
self.assertEqual(ports, [60000, 60001, 60002])
# Test 2: if we set something listening on port 60000
# then ask for the same ports as in test 1,
# the function should skip over 60000 and give us the next
# three ports
s1 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s1.bind(("127.0.0.1", 60000))
ports = get_port_range(60000, 3)
self.assertEqual(ports, [60001, 60002, 60003])
# Test 3: if we set something listening on port 60002,
# the function should realise it can't allocate a continuous
# range starting from 60000 and should give us a range starting
# from 60003
s2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s2.bind(("127.0.0.1", 60002))
ports = get_port_range(60000, 3)
self.assertEqual(ports, [60003, 60004, 60005])
s2.close()
s1.close()
def test_batch_iter_1(self):
"""
Check that batch_iter gives us exactly the right data back.
"""
l1 = list(range(16))
l2 = list(range(15))
l3 = list(range(13))
for l in [l1, l2, l3]:
for shuffle in [True, False]:
expected_data = l
actual_data = set()
expected_n_batches = ceil(len(l) / 4)
actual_n_batches = 0
for batch_n, x in enumerate(batch_iter(l,
batch_size=4,
shuffle=shuffle)):
if batch_n == expected_n_batches - 1 and len(l) % 4 != 0:
self.assertEqual(len(x), len(l) % 4)
else:
self.assertEqual(len(x), 4)
self.assertEqual(len(actual_data.intersection(set(x))), 0)
actual_data = actual_data.union(set(x))
actual_n_batches += 1
self.assertEqual(actual_n_batches, expected_n_batches)
np.testing.assert_array_equal(list(actual_data), expected_data)
def test_batch_iter_2(self):
"""
Check that shuffle=True returns the same data but in a different order.
"""
expected_data = list(range(16))
actual_data = []
for x in batch_iter(expected_data, batch_size=4, shuffle=True):
actual_data.extend(x)
self.assertEqual(len(actual_data), len(expected_data))
self.assertEqual(set(actual_data), set(expected_data))
with self.assertRaises(AssertionError):
np.testing.assert_array_equal(actual_data, expected_data)
def test_batch_iter_3(self):
"""
Check that successive calls shuffle in a different order.
"""
data = list(range(16))
out1 = []
for x in batch_iter(data, batch_size=4, shuffle=True):
out1.extend(x)
out2 = []
for x in batch_iter(data, batch_size=4, shuffle=True):
out2.extend(x)
self.assertEqual(set(out1), set(out2))
with self.assertRaises(AssertionError):
np.testing.assert_array_equal(out1, out2)
if __name__ == '__main__':
unittest.main()