-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathD.cpp
82 lines (71 loc) · 1.85 KB
/
D.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
//Took help
#include<bits/stdc++.h>
#include<string>
using namespace std;
#define fastio ios_base::sync_with_stdio(false);cin.tie(NULL)
unsigned long long fac[100005];
/* Iterative Function to calculate (x^y)%p
in O(log y) */
unsigned long long power(unsigned long long x,
unsigned long long y, unsigned long long p)
{
unsigned long long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n,
unsigned long long p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n,
unsigned long long r, unsigned long long p)
{
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
/*unsigned long long fac[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = (fac[i - 1] * i) % p;*/
return (fac[n] * modInverse(fac[r], p) % p
* modInverse(fac[n - r], p) % p)
% p;
}
int main()
{
fastio;
unsigned long long n,k,sum=0,p=1000000007;
cin>>n>>k;
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = (fac[i - 1] * i) % p;
if(k>=n)
cout<<power(2,n,p);
else
{
for(int i=0;i<=k;i++)
sum=(sum+nCrModPFermat(n,i,p))%p;
cout<<sum%p<<"\n";
}
return 0;
}