diff --git a/R/biting_process.R b/R/biting_process.R index 801aea20..ff78a3a3 100644 --- a/R/biting_process.R +++ b/R/biting_process.R @@ -15,8 +15,10 @@ #' values (default: 1) #' @param mixing_index an index for this population's position in the #' lagged_infectivity list (default: 1) +#' @param infection_outcome competing hazards object for infection rates +#' @param timestep the current timestep #' @noRd -create_biting_process <- function( +biting_process <- function( renderer, solvers, models, @@ -26,37 +28,38 @@ create_biting_process <- function( lagged_infectivity, lagged_eir, mixing = 1, - mixing_index = 1 + mixing_index = 1, + infection_outcome, + timestep ) { - function(timestep) { - # Calculate combined EIR - age <- get_age(variables$birth$get_values(), timestep) - - bitten_humans <- simulate_bites( - renderer, - solvers, - models, - variables, - events, - age, - parameters, - timestep, - lagged_infectivity, - lagged_eir, - mixing, - mixing_index - ) - - simulate_infection( - variables, - events, - bitten_humans, - age, - parameters, - timestep, - renderer - ) - } + + age <- get_age(variables$birth$get_values(), timestep) + + bitten_humans <- simulate_bites( + renderer, + solvers, + models, + variables, + events, + age, + parameters, + timestep, + lagged_infectivity, + lagged_eir, + mixing, + mixing_index + ) + + simulate_infection( + variables, + events, + bitten_humans, + age, + parameters, + timestep, + renderer, + infection_outcome + ) } #' @importFrom stats rpois @@ -74,8 +77,9 @@ simulate_bites <- function( mixing = 1, mixing_index = 1 ) { + bitten_humans <- individual::Bitset$new(parameters$human_population) - + human_infectivity <- variables$infectivity$get_values() if (parameters$tbv) { human_infectivity <- account_for_tbv( @@ -86,21 +90,21 @@ simulate_bites <- function( ) } renderer$render('infectivity', mean(human_infectivity), timestep) - + # Calculate pi (the relative biting rate for each human) psi <- unique_biting_rate(age, parameters) zeta <- variables$zeta$get_values() .pi <- human_pi(zeta, psi) - + # Get some indices for later if (parameters$individual_mosquitoes) { infectious_index <- variables$mosquito_state$get_index_of('Im') susceptible_index <- variables$mosquito_state$get_index_of('Sm') adult_index <- variables$mosquito_state$get_index_of('NonExistent')$not(TRUE) } - + EIR <- 0 - + for (s_i in seq_along(parameters$species)) { species_name <- parameters$species[[s_i]] solver_states <- solvers[[s_i]]$get_states() @@ -111,7 +115,7 @@ simulate_bites <- function( f <- blood_meal_rate(s_i, Z, parameters) a <- .human_blood_meal_rate(f, s_i, W, parameters) lambda <- effective_biting_rates(a, .pi, p_bitten) - + if (parameters$individual_mosquitoes) { species_index <- variables$species$get_index_of( parameters$species[[s_i]] @@ -127,10 +131,10 @@ simulate_bites <- function( } else { n_infectious <- calculate_infectious_compartmental(solver_states) } - + # store the current population's EIR for later lagged_eir[[mixing_index]][[s_i]]$save(n_infectious * a, timestep) - + # calculated the EIR for this timestep after mixing species_eir <- sum( vnapply( @@ -138,7 +142,7 @@ simulate_bites <- function( function(l) l[[s_i]]$get(timestep - parameters$de) ) * mixing ) - + renderer$render(paste0('EIR_', species_name), species_eir, timestep) EIR <- EIR + species_eir expected_bites <- species_eir * mean(psi) @@ -150,7 +154,7 @@ simulate_bites <- function( ) } } - + infectivity <- vnapply( lagged_infectivity, function(l) l$get(timestep - parameters$delay_gam) @@ -163,7 +167,7 @@ simulate_bites <- function( renderer$render(paste0('FOIM_', species_name), foim, timestep) mu <- death_rate(f, W, Z, s_i, parameters) renderer$render(paste0('mu_', species_name), mu, timestep) - + if (parameters$individual_mosquitoes) { # update the ODE with stats for ovoposition calculations aquatic_mosquito_model_update( @@ -172,10 +176,10 @@ simulate_bites <- function( f, mu ) - + # update the individual mosquitoes susceptible_species_index <- susceptible_index$copy()$and(species_index) - + biting_effects_individual( variables, foim, @@ -197,7 +201,7 @@ simulate_bites <- function( ) } } - + renderer$render('n_bitten', bitten_humans$size(), timestep) bitten_humans } @@ -210,9 +214,7 @@ simulate_bites <- function( calculate_eir <- function(species, solvers, variables, parameters, timestep) { a <- human_blood_meal_rate(species, variables, parameters, timestep) infectious <- calculate_infectious(species, solvers, variables, parameters) - age <- get_age(variables$birth$get_values(), timestep) - psi <- unique_biting_rate(age, parameters) - infectious * a * mean(psi) + infectious * a } effective_biting_rates <- function(a, .pi, p_bitten) { @@ -246,7 +248,7 @@ calculate_infectious_individual <- function( species_index, parameters ) { - + infectious_index$copy()$and(species_index)$size() } diff --git a/R/competing_hazards.R b/R/competing_hazards.R new file mode 100644 index 00000000..ed6890a5 --- /dev/null +++ b/R/competing_hazards.R @@ -0,0 +1,78 @@ +## Define classes to resolve competing hazards +CompetingOutcome <- R6::R6Class( + "CompetingOutcome", + private = list( + targeted_process = NULL + ), + public = list( + initialize = function(targeted_process, size){ + if (!is.function(targeted_process)){ + stop("targeted_process must be a function") + } + if (!is.numeric(size) || size <= 0){ + stop("size must be positive integer") + } + private$targeted_process <- targeted_process + self$rates <- rep(0, size) + }, + set_rates = function(rates){ + self$rates <- rates + }, + execute = function(t, target){ + private$targeted_process(t, target) + self$rates <- rep(0, length(self$rates)) + }, + rates = NULL + ) +) + +CompetingHazard <- R6::R6Class( + "CompetingHazard", + private = list( + outcomes = list(), + size = NULL, + # RNG is passed in because mockery is not able to stub runif + # TODO: change when fixed + rng = NULL + ), + public = list( + initialize = function(outcomes, rng = runif){ + if (length(outcomes) == 0){ + stop("At least one outcome must be provided") + } + if (!all(sapply(outcomes, function(x) inherits(x, "CompetingOutcome")))){ + stop("All outcomes must be of class CompetingOutcome") + } + private$outcomes <- outcomes + private$size <- length(outcomes[[1]]$rates) + private$rng <- rng + }, + resolve = function(t){ + event_probs <- do.call( + 'cbind', + lapply(private$outcomes, function(x) x$rates) + ) + occur_prob <- rowSums(event_probs) + occur_rng <- private$rng(private$size) + occurs <- occur_rng < occur_prob + norm_probs <- event_probs / occur_prob + norm_probs[is.na(norm_probs)] <- 0 + cum_probs <- apply(norm_probs, 1, cumsum) + event_rng <- private$rng(private$size) + for(o in seq_along(private$outcomes)){ + if (o == 1) { + selected <- (event_rng <= cum_probs[o,]) + } else { + selected <- (event_rng > cum_probs[o - 1,]) & + (event_rng <= cum_probs[o,]) + } + target <- individual::Bitset$new(private$size)$insert( + which(selected & occurs) + ) + if (target$size() > 0){ + private$outcomes[[o]]$execute(t, target) + } + } + } + ) +) diff --git a/R/disease_progression.R b/R/disease_progression.R index d9ac11e4..fd2cb74d 100644 --- a/R/disease_progression.R +++ b/R/disease_progression.R @@ -1,3 +1,71 @@ +#' @title Calculate recovery rates +#' @description Calculates recovery rates for each individual in the population +#' for storage in competing hazards object and future resolution +#' +#' @param variables the available human variables +#' @param parameters model parameters +#' @param recovery_outcome competing hazards object for recovery rates +#' @noRd +calculate_recovery_rates <- function(variables, parameters, recovery_outcome){ + recovery_rates <- numeric(length = parameters$human_population) + recovery_rates[variables$state$get_index_of("D")$to_vector()] <- 1/parameters$dd + recovery_rates[variables$state$get_index_of("A")$to_vector()] <- 1/parameters$da + recovery_rates[variables$state$get_index_of("U")$to_vector()] <- 1/parameters$du + recovery_rates[variables$state$get_index_of("Tr")$to_vector()] <- 1/parameters$dt + recovery_outcome$set_rates(recovery_rates) +} + +#' @title Disease progression outcomes (recovery) +#' @description Following resolution of competing hazards, update state and +#' infectivity of sampled individuals +#' +#' @param timestep the current timestep +#' @param target the sampled recovering individuals +#' @param variables the available human variables +#' @param parameters model parameters +#' @param renderer competing hazards object for recovery rates +#' @noRd +recovery_process_resolved_hazard <- function( + timestep, + target, + variables, + parameters, + renderer + ){ + + update_to_asymptomatic_infection( + variables, + parameters, + timestep, + variables$state$get_index_of("D")$and(target) + ) + + update_infection( + variables$state, + "U", + variables$infectivity, + parameters$cu, + variables$state$get_index_of("A")$and(target) + ) + + update_infection( + variables$state, + "S", + variables$infectivity, + 0, + variables$state$get_index_of("U")$and(target) + ) + + update_infection( + variables$state, + "S", + variables$infectivity, + 0, + variables$state$get_index_of("Tr")$and(target) + ) + +} + #' @title Update the state of an individual as infection events occur #' @description Randomly moves individuals towards the later stages of disease #' and updates their infectivity @@ -18,55 +86,6 @@ update_infection <- function( infectivity$queue_update(new_infectivity, to_move) } -create_progression_process <- function( - state, - from_state, - to_state, - rate, - infectivity, - new_infectivity -) { - function(timestep) { - - # Retrieve the indices of all individuals in the to_move state: - index <- state$get_index_of(from_state) - - # If the length of rate is greater than 1 (when it's a variable): - if (inherits(rate, "DoubleVariable")) { - rate <- rate$get_values(index) - } - - # Sample the individuals to be moved into a new Bitset using the transition rate(s): - to_move <- index$sample(1/rate) - - # Update the infection status of those individuals who are moving: - update_infection( - state, - to_state, - infectivity, - new_infectivity, - to_move - ) - } -} - -create_asymptomatic_progression_process <- function( - state, - rate, - variables, - parameters - ) { - function(timestep) { - to_move <- state$get_index_of('D')$sample(1/rate) - update_to_asymptomatic_infection( - variables, - parameters, - timestep, - to_move - ) - } -} - #' @title Modelling the progression to asymptomatic disease #' @description Randomly moves individuals to asymptomatic disease and #' calculates the infectivity for their age and immunity diff --git a/R/human_infection.R b/R/human_infection.R index d62b16f0..eedd4029 100644 --- a/R/human_infection.R +++ b/R/human_infection.R @@ -1,23 +1,26 @@ #' @title Simulate malaria infection in humans #' @description -#' Updates human states and variables to represent asymptomatic/clinical/severe -#' and treated malaria; and resulting boosts in immunity +#' This function ends with the assignment of rates of infection to the competing +#' hazard resolution object. Boosts immunity given infectious bites. #' @param variables a list of all of the model variables #' @param events a list of all of the model events #' @param bitten_humans a bitset of bitten humans #' @param age of each human (timesteps) #' @param parameters of the model #' @param timestep current timestep +#' @param renderer the model renderer object +#' @param infection_outcome competing hazards object for infection rates #' @noRd simulate_infection <- function( - variables, - events, - bitten_humans, - age, - parameters, - timestep, - renderer - ) { + variables, + events, + bitten_humans, + age, + parameters, + timestep, + renderer, + infection_outcome +) { if (bitten_humans$size() > 0) { boost_immunity( variables$ib, @@ -29,11 +32,118 @@ simulate_infection <- function( } # Calculate Infected - infected_humans <- calculate_infections( + calculate_infections( + variables, + bitten_humans, + parameters, + renderer, + timestep, + infection_outcome + ) + +} + +#' @title Calculate overall infections for bitten humans +#' @description Infection rates are stored in the infection outcome competing hazards object +#' @param variables a list of all of the model variables +#' @param bitten_humans bitset of bitten humans +#' @param parameters model parameters +#' @param renderer model render object +#' @param timestep current timestep +#' @noRd +calculate_infections <- function( variables, bitten_humans, parameters, renderer, + timestep, + infection_outcome +) { + source_humans <- variables$state$get_index_of( + c('S', 'A', 'U'))$and(bitten_humans) + + b <- blood_immunity(variables$ib$get_values(source_humans), parameters) + + source_vector <- source_humans$to_vector() + + # calculate prophylaxis + prophylaxis <- rep(0, length(source_vector)) + drug <- variables$drug$get_values(source_vector) + medicated <- (drug > 0) + if (any(medicated)) { + drug <- drug[medicated] + drug_time <- variables$drug_time$get_values(source_vector[medicated]) + prophylaxis[medicated] <- weibull_survival( + timestep - drug_time, + parameters$drug_prophylaxis_shape[drug], + parameters$drug_prophylaxis_scale[drug] + ) + } + + # calculate vaccine efficacy + vaccine_efficacy <- rep(0, length(source_vector)) + vaccine_times <- variables$pev_timestep$get_values(source_vector) + vaccinated <- vaccine_times > -1 + pev_profile <- variables$pev_profile$get_values(source_vector) + pev_profile <- pev_profile[vaccinated] + if (length(vaccinated) > 0) { + antibodies <- calculate_pev_antibodies( + timestep - vaccine_times[vaccinated], + exp(sample_pev_param(pev_profile, parameters$pev_profiles, 'cs')), + invlogit(sample_pev_param(pev_profile, parameters$pev_profiles, 'rho')), + exp(sample_pev_param(pev_profile, parameters$pev_profiles, 'ds')), + exp(sample_pev_param(pev_profile, parameters$pev_profiles, 'dl')), + parameters + ) + vmax <- vnapply(parameters$pev_profiles, function(p) p$vmax) + beta <- vnapply(parameters$pev_profiles, function(p) p$beta) + alpha <- vnapply(parameters$pev_profiles, function(p) p$alpha) + vaccine_efficacy[vaccinated] <- calculate_pev_efficacy( + antibodies, + vmax[pev_profile], + beta[pev_profile], + alpha[pev_profile] + ) + } + + prob <- b * (1 - prophylaxis) * (1 - vaccine_efficacy) + + ## Capture infection rates to resolve in competing hazards + infection_rates <- numeric(length = parameters$human_population) + infection_rates[source_vector] <- prob_to_rate(prob) + infection_outcome$set_rates(infection_rates) +} + +#' @title Assigns infections to appropriate human states +#' @description +#' Updates human states and variables to represent asymptomatic/clinical/severe +#' and treated malaria; and resulting boosts in immunity +#' @param timestep current timestep +#' @param infected_humans bitset of infected humans +#' @param variables a list of all of the model variables +#' @param renderer model render object +#' @param parameters model parameters +#' @param prob vector of population probabilities of infection +#' @noRd +infection_process_resolved_hazard <- function( + timestep, + infected_humans, + variables, + renderer, + parameters, + prob){ + + source_humans <- variables$state$get_index_of(values = c("S","A","U")) + + incidence_renderer( + variables$birth, + renderer, + infected_humans, + source_humans, + prob[source_humans$to_vector()], + 'inc_', + parameters$incidence_rendering_min_ages, + parameters$incidence_rendering_max_ages, timestep ) @@ -90,6 +200,7 @@ simulate_infection <- function( ) } +<<<<<<< HEAD #' @title Calculate overall infections for bitten humans #' @description #' Sample infected humans given prophylaxis and vaccination @@ -171,6 +282,8 @@ calculate_infections <- function( infected } +======= +>>>>>>> d694b08 (Infection and recovery competing hazard resolution.) #' @title Calculate clinical infections #' @description @@ -182,12 +295,12 @@ calculate_infections <- function( #' @param timestep current timestep #' @noRd calculate_clinical_infections <- function( - variables, - infections, - parameters, - renderer, - timestep - ) { + variables, + infections, + parameters, + renderer, + timestep +) { ica <- variables$ica$get_values(infections) icm <- variables$icm$get_values(infections) phi <- clinical_immunity(ica, icm, parameters) @@ -216,12 +329,12 @@ calculate_clinical_infections <- function( #' @param renderer model outputs #' @noRd update_severe_disease <- function( - timestep, - infections, - variables, - parameters, - renderer - ) { + timestep, + infections, + variables, + parameters, + renderer +) { age <- get_age(variables$birth$get_values(infections), timestep) iva <- variables$iva$get_values(infections) ivm <- variables$ivm$get_values(infections) @@ -269,11 +382,14 @@ calculate_treated <- function( timestep, renderer ) { +<<<<<<< HEAD if(clinical_infections$size() == 0) { return(individual::Bitset$new(parameters$human_population)) } +======= +>>>>>>> d694b08 (Infection and recovery competing hazard resolution.) treatment_coverages <- get_treatment_coverages(parameters, timestep) ft <- sum(treatment_coverages) @@ -284,8 +400,12 @@ calculate_treated <- function( renderer$render('ft', ft, timestep) seek_treatment <- sample_bitset(clinical_infections, ft) n_treat <- seek_treatment$size() +<<<<<<< HEAD +======= + +>>>>>>> d694b08 (Infection and recovery competing hazard resolution.) renderer$render('n_treated', n_treat, timestep) - + drugs <- as.numeric(parameters$clinical_treatment_drugs[ sample.int( length(parameters$clinical_treatment_drugs), @@ -380,13 +500,13 @@ calculate_treated <- function( #' @param parameters model parameters #' @noRd schedule_infections <- function( - variables, - clinical_infections, - treated, - infections, - parameters, - timestep - ) { + variables, + clinical_infections, + treated, + infections, + parameters, + timestep +) { included <- treated$not(TRUE) to_infect <- clinical_infections$and(included) @@ -418,12 +538,12 @@ schedule_infections <- function( # Utility functions # ================= boost_immunity <- function( - immunity_variable, - exposed_index, - last_boosted_variable, - timestep, - delay - ) { + immunity_variable, + exposed_index, + last_boosted_variable, + timestep, + delay +) { # record who can be boosted exposed_index_vector <- exposed_index$to_vector() last_boosted <- last_boosted_variable$get_values(exposed_index) @@ -446,7 +566,7 @@ boost_immunity <- function( # Implemented from Winskill 2017 - Supplementary Information page 4 clinical_immunity <- function(acquired_immunity, maternal_immunity, parameters) { acquired_immunity[acquired_immunity > 0] <- acquired_immunity[acquired_immunity > 0] + 0.5 - + parameters$phi0 * ( parameters$phi1 + (1 - parameters$phi1) / @@ -461,14 +581,14 @@ clinical_immunity <- function(acquired_immunity, maternal_immunity, parameters) # Implemented from Winskill 2017 - Supplementary Information page 5 severe_immunity <- function(age, acquired_immunity, maternal_immunity, parameters) { acquired_immunity[acquired_immunity > 0] <- acquired_immunity[acquired_immunity > 0] + 0.5 - + fv <- 1 - (1 - parameters$fv0) / ( 1 + (age / parameters$av) ** parameters$gammav ) parameters$theta0 * (parameters$theta1 + (1 - parameters$theta1) / ( 1 + fv * ( (acquired_immunity + maternal_immunity) / parameters$iv0) ** parameters$kv - ) + ) ) } @@ -495,7 +615,7 @@ asymptomatic_infectivity <- function(age, immunity, parameters) { # Implemented from Winskill 2017 - Supplementary Information page 4 blood_immunity <- function(ib, parameters) { ib[ib > 0] <- ib[ib > 0] + 0.5 - + parameters$b0 * ( parameters$b1 + (1 - parameters$b1) / diff --git a/R/processes.R b/R/processes.R index 12f8c3db..f4c18ab3 100644 --- a/R/processes.R +++ b/R/processes.R @@ -30,7 +30,7 @@ create_processes <- function( correlations, lagged_eir, lagged_infectivity, - timesteps, + timesteps, mixing = 1, mixing_index = 1 ) { @@ -62,15 +62,37 @@ create_processes <- function( ) } + # ===================================================== + # Competing Hazard Outcomes (Infections and Recoveries) + # ===================================================== + + infection_outcome <- CompetingOutcome$new( + targeted_process = function(timestep, target){ + infection_process_resolved_hazard(timestep, target, variables, renderer, parameters, prob = rate_to_prob(infection_outcome$rates)) + }, + size = parameters$human_population + ) + + recovery_outcome <- CompetingOutcome$new( + targeted_process = function(timestep, target){ + recovery_process_resolved_hazard(timestep, target, variables, parameters, renderer) + }, + size = parameters$human_population + ) + + create_infection_recovery_hazard_process <- CompetingHazard$new( + outcomes = list(infection_outcome, recovery_outcome) + ) + # ============================== # Biting and mortality processes # ============================== - # schedule infections for humans and set last_boosted_* + # simulate infections for humans and set last_boosted_* # move mosquitoes into incubating state # kill mosquitoes caught in vector control - processes <- c( - processes, - create_biting_process( + + create_infection_rates_process <- function(timestep){ + biting_process( renderer, solvers, models, @@ -80,59 +102,29 @@ create_processes <- function( lagged_infectivity, lagged_eir, mixing, - mixing_index - ), - create_asymptomatic_progression_process( - variables$state, - parameters$dd, - variables, - parameters - ), - create_progression_process( - variables$state, - 'A', - 'U', - parameters$da, - variables$infectivity, - parameters$cu - ), - create_progression_process( - variables$state, - 'U', - 'S', - parameters$du, - variables$infectivity, - 0 + mixing_index, + infection_outcome, + timestep ) - ) - - # ======================= - # Antimalarial Resistance - # ======================= - # Add an a new process which governs the transition from Tr to S when - # antimalarial resistance is simulated. The rate of transition switches - # from a parameter to a variable when antimalarial resistance == TRUE. - - # Assign the dt input to a separate object with the default single parameter value: - dt_input <- parameters$dt - - # If antimalarial resistance is switched on, assign dt variable values to the - if(parameters$antimalarial_resistance) { - dt_input <- variables$dt } - - # Create the progression process for Tr --> S specifying dt_input as the rate: - processes <- c( - processes, - create_progression_process( - variables$state, - 'Tr', - 'S', - dt_input, - variables$infectivity, - 0 + + # =================== + # Disease Progression + # =================== + + create_recovery_rates_process <- function(timestep){ + calculate_recovery_rates( + variables, + parameters, + recovery_outcome ) - ) + } + + processes <- c(processes, + create_infection_rates_process, + create_recovery_rates_process, + create_infection_recovery_hazard_process$resolve) + # =============== # ODE integration @@ -264,7 +256,11 @@ create_processes <- function( ) } + # ====================== # Mortality step + # ====================== + # Mortality is not resolved as a competing hazard + processes <- c( processes, create_mortality_process(variables, events, renderer, parameters)) diff --git a/R/render.R b/R/render.R index 60cb5b73..3024597b 100644 --- a/R/render.R +++ b/R/render.R @@ -3,16 +3,16 @@ in_age_range <- function(birth, timestep, lower, upper) { } #' @title Render prevalence statistics -#' +#' #' @description renders prevalence numerators and denominators for indivduals #' detected by microscopy and with severe malaria -#' +#' #' @param state human infection state #' @param birth variable for birth of the individual #' @param immunity to detection #' @param parameters model parameters #' @param renderer model renderer -#' +#' #' @noRd create_prevelance_renderer <- function( state, @@ -41,7 +41,7 @@ create_prevelance_renderer <- function( paste0('n_', lower, '_', upper), in_age$size(), timestep - ) + ) renderer$render( paste0('n_detect_', lower, '_', upper), in_age$copy()$and(detected)$size(), @@ -59,9 +59,9 @@ create_prevelance_renderer <- function( } #' @title Render incidence statistics -#' +#' #' @description renders incidence (new for this timestep) for indivduals -#' +#' #' @param birth variable for birth of the individual #' @param renderer object for model outputs #' @param target incidence population @@ -71,19 +71,19 @@ create_prevelance_renderer <- function( #' @param lowers age bounds #' @param uppers age bounds #' @param timestep current target -#' +#' #' @noRd incidence_renderer <- function( - birth, - renderer, - target, - source_pop, - prob, - prefix, - lowers, - uppers, - timestep - ) { + birth, + renderer, + target, + source_pop, + prob, + prefix, + lowers, + uppers, + timestep +) { for (i in seq_along(lowers)) { lower <- lowers[[i]] upper <- uppers[[i]] @@ -104,9 +104,9 @@ incidence_renderer <- function( } create_variable_mean_renderer_process <- function( - renderer, - names, - variables + renderer, + names, + variables ) { function(timestep) { for (i in seq_along(variables)) { @@ -120,12 +120,12 @@ create_variable_mean_renderer_process <- function( } create_vector_count_renderer_individual <- function( - mosquito_state, - species, - state, - renderer, - parameters - ) { + mosquito_state, + species, + state, + renderer, + parameters +) { function(timestep) { adult <- mosquito_state$get_index_of('NonExistent')$not(TRUE) for (i in seq_along(parameters$species)) { @@ -168,7 +168,7 @@ create_age_group_renderer <- function( paste0('n_age_', lower, '_', upper), in_age$size(), timestep - ) + ) } } } diff --git a/R/utils.R b/R/utils.R index 2262c939..02c4d265 100644 --- a/R/utils.R +++ b/R/utils.R @@ -2,7 +2,7 @@ vnapply <- function(X, FUN, ...) vapply(X, FUN, ..., numeric(1)) vlapply <- function(X, FUN, ...) vapply(X, FUN, ..., logical(1)) vcapply <- function(X, FUN, ...) vapply(X, FUN, ..., character(1)) -#' @importFrom stats rbinom +#' @importFrom stats rbinom bernoulli <- function(size, p) sample.int(size, rbinom(1, size, min(p, 1))) sample_bitset <- function(b, rate) { @@ -88,3 +88,18 @@ RandomState <- R6::R6Class( } ) ) + +#'@title Convert probability to a rate +#'@param prob probability +#'@noRd +prob_to_rate <- function(prob){ + -log(1 - prob) +} + + +#'@title Convert rate to a probability +#'@param rate rate +#'@noRd +rate_to_prob <- function(rate){ + 1- exp(-rate) +} diff --git a/tests/testthat/test-biology.R b/tests/testthat/test-biology.R index c739f7e7..eb04116b 100644 --- a/tests/testthat/test-biology.R +++ b/tests/testthat/test-biology.R @@ -92,7 +92,7 @@ test_that('FOIM is consistent with equilibrium', { psi <- unique_biting_rate(age, parameters) zeta <- variables$zeta$get_values() .pi <- human_pi(psi, zeta) - calculate_foim(a, sum(.pi * variables$infectivity$get_values()), 1.) + calculate_foim(a, sum(.pi * variables$infectivity$get_values()), mixing = 1) } ) expect_equal( diff --git a/tests/testthat/test-biting-integration.R b/tests/testthat/test-biting-integration.R index 7da79b66..65ffc011 100644 --- a/tests/testthat/test-biting-integration.R +++ b/tests/testthat/test-biting-integration.R @@ -14,15 +14,11 @@ test_that('biting_process integrates mosquito effects and human infection', { models <- parameterise_mosquito_models(parameters, timestep) solvers <- parameterise_solvers(models, parameters) - biting_process <- create_biting_process( - renderer, - solvers, - models, - variables, - events, - parameters, - lagged_foim, - lagged_eir + infection_outcome <- CompetingOutcome$new( + targeted_process = function(timestep, target){ + infection_process_resolved_hazard(timestep, target, variables, renderer, parameters) + }, + size = parameters$human_population ) bitten <- individual::Bitset$new(parameters$human_population) @@ -31,7 +27,21 @@ test_that('biting_process integrates mosquito effects and human infection', { mockery::stub(biting_process, 'simulate_bites', bites_mock) mockery::stub(biting_process, 'simulate_infection', infection_mock) - biting_process(timestep) + + biting_process( + renderer, + solvers, + models, + variables, + events, + parameters, + lagged_foim, + lagged_eir, + mixing = 1, + mixing_index = 1, + infection_outcome, + timestep + ) mockery::expect_args( bites_mock, @@ -59,7 +69,8 @@ test_that('biting_process integrates mosquito effects and human infection', { age, parameters, timestep, - renderer + renderer, + infection_outcome ) }) diff --git a/tests/testthat/test-competing-hazards.R b/tests/testthat/test-competing-hazards.R new file mode 100644 index 00000000..13738f53 --- /dev/null +++ b/tests/testthat/test-competing-hazards.R @@ -0,0 +1,250 @@ +# ============================== +# Test the CompetingHazard class +# ============================== + +test_that('hazard resolves two normalised outcomes when all events occur', { + + size <- 4 + outcome_1_process <- mockery::mock() + outcome_1 <- CompetingOutcome$new( + targeted_process = outcome_1_process, + size = size + ) + outcome_2_process <- mockery::mock() + outcome_2 <- CompetingOutcome$new( + targeted_process = outcome_2_process, + size = size + ) + + hazard <- CompetingHazard$new( + outcomes = list(outcome_1, outcome_2), + rng = mockery::mock( + c(0, 0, 0, 0), # all events occur + c(.05, .3, .2, .5) # event_rng + ) + ) + + outcome_1$set_rates(c(0.1, 0.2, 0.3, 0.4)) + outcome_2$set_rates(c(0.9, 0.8, 0.7, 0.6)) + + hazard$resolve(0) + + mockery::expect_args( + outcome_1_process, + 1, + 0, + individual::Bitset$new(size)$insert(c(1, 3)) + ) + mockery::expect_args( + outcome_2_process, + 1, + 0, + individual::Bitset$new(size)$insert(c(2, 4)) + ) +}) + +test_that('hazard resolves two unnormalised outcomes when all events occur', { + + size <- 4 + outcome_1_process <- mockery::mock() + outcome_1 <- CompetingOutcome$new( + targeted_process = outcome_1_process, + size = size + ) + + outcome_2_process <- mockery::mock() + outcome_2 <- CompetingOutcome$new( + targeted_process = outcome_2_process, + size = size + ) + + hazard <- CompetingHazard$new( + outcomes = list(outcome_1, outcome_2), + rng = mockery::mock( + c(0, 0, 0, 0), # all events occur + c(.05, .3, .2, .5) # event_rng + ) + ) + + outcome_1$set_rates(c(0.1, 0.2, 0.3, 0.4) / 2) + outcome_2$set_rates(c(0.9, 0.8, 0.7, 0.6) / 2) + + hazard$resolve(0) + + mockery::expect_args( + outcome_1_process, + 1, + 0, + individual::Bitset$new(size)$insert(c(1, 3)) + ) + mockery::expect_args( + outcome_2_process, + 1, + 0, + individual::Bitset$new(size)$insert(c(2, 4)) + ) +}) + +test_that('hazard resolves two outcomes when some events occur', { + + size <- 4 + outcome_1_process <- mockery::mock() + outcome_1 <- CompetingOutcome$new( + targeted_process = outcome_1_process, + size = size + ) + + outcome_2_process <- mockery::mock() + outcome_2 <- CompetingOutcome$new( + targeted_process = outcome_2_process, + size = size + ) + + hazard <- CompetingHazard$new( + outcomes = list(outcome_1, outcome_2), + rng = mockery::mock( + c(0, 0, 1, 1), # some events occur + c(.05, .3, .2, .5), # event_rng + ) + ) + + outcome_1$set_rates(c(0.1, 0.2, 0.3, 0.4) / 2) + outcome_2$set_rates(c(0.9, 0.8, 0.7, 0.6) / 2) + + hazard$resolve(0) + + mockery::expect_args( + outcome_1_process, + 1, + 0, + individual::Bitset$new(size)$insert(1) + ) + mockery::expect_args( + outcome_2_process, + 1, + 0, + individual::Bitset$new(size)$insert(2) + ) +}) + + +test_that('hazard resolves when no rates are set', { + + size <- 4 + outcome_1_process <- mockery::mock() + outcome_1 <- CompetingOutcome$new( + targeted_process = outcome_1_process, + size = size + ) + + outcome_2_process <- mockery::mock() + outcome_2 <- CompetingOutcome$new( + targeted_process = outcome_2_process, + size = size + ) + + hazard <- CompetingHazard$new( + outcomes = list(outcome_1, outcome_2) + ) + + hazard$resolve(0) + + mockery::expect_called( + outcome_1_process, + 0 + ) + mockery::expect_called( + outcome_2_process, + 0 + ) +}) + +test_that('hazard resolves when rates are set to one', { + + size <- 4 + outcome_1_process <- mockery::mock() + outcome_1 <- CompetingOutcome$new( + targeted_process = outcome_1_process, + size = size + ) + + outcome_2_process <- mockery::mock() + outcome_2 <- CompetingOutcome$new( + targeted_process = outcome_2_process, + size = size + ) + + hazard <- CompetingHazard$new( + outcomes = list(outcome_1, outcome_2) + ) + + outcome_1$set_rates(rep(1, size)) + hazard$resolve(0) + + mockery::expect_args( + outcome_1_process, + 1, + 0, + individual::Bitset$new(size)$insert(c(1, 2, 3, 4)) + ) + mockery::expect_called( + outcome_2_process, + 0 + ) +}) + +test_that('hazard resolves three outcomes', { + + size <- 4 + outcome_1_process <- mockery::mock() + outcome_1 <- CompetingOutcome$new( + targeted_process = outcome_1_process, + size = size + ) + + outcome_2_process <- mockery::mock() + outcome_2 <- CompetingOutcome$new( + targeted_process = outcome_2_process, + size = size + ) + + outcome_3_process <- mockery::mock() + outcome_3 <- CompetingOutcome$new( + targeted_process = outcome_3_process, + size = size + ) + + hazard <- CompetingHazard$new( + outcomes = list(outcome_1, outcome_2, outcome_3), + rng = mockery::mock( + c(0, 0, 0, 0), # all events occur + c(.04, .3, .14, .6), # event_rng + ) + ) + + outcome_1$set_rates(c(0.1, 0.2, 0.3, 0.4) / 2) + outcome_2$set_rates(c(0.9, 0.8, 0.7, 0.6) / 2) + outcome_3$set_rates(c(0.5, 0.5, 0.5, 0.5)) + + hazard$resolve(0) + + mockery::expect_args( + outcome_1_process, + 1, + 0, + individual::Bitset$new(size)$insert(c(1, 3)) + ) + mockery::expect_args( + outcome_2_process, + 1, + 0, + individual::Bitset$new(size)$insert(2) + ) + mockery::expect_args( + outcome_3_process, + 1, + 0, + individual::Bitset$new(size)$insert(4) + ) +}) + diff --git a/tests/testthat/test-infection-integration.R b/tests/testthat/test-infection-integration.R index 83d7def9..2e9d5c9c 100644 --- a/tests/testthat/test-infection-integration.R +++ b/tests/testthat/test-infection-integration.R @@ -6,7 +6,7 @@ test_that('simulate_infection integrates different types of infection and schedu )) events <- create_events(parameters) renderer <- mock_render(timestep) - + age <- c(20, 24, 5, 39, 20, 24, 5, 39) * 365 immunity <- c(.2, .3, .5, .9, .2, .3, .5, .9) asymptomatics <- mockery::mock() @@ -15,27 +15,22 @@ test_that('simulate_infection integrates different types of infection and schedu id = individual::DoubleVariable$new(immunity), state = list(get_index_of = mockery::mock(asymptomatics)) ) - + bitten <- individual::Bitset$new(population)$insert(c(1, 3, 5, 7)) boost_immunity_mock <- mockery::mock() infected <- individual::Bitset$new(population)$insert(c(1, 3, 5)) infection_mock <- mockery::mock(infected) - clinical <- individual::Bitset$new(population)$insert(c(1, 3)) - clinical_infection_mock <- mockery::mock(clinical) - severe <- individual::Bitset$new(population)$insert(1) - severe_infection_mock <- mockery::mock(severe) - treated <- individual::Bitset$new(population)$insert(3) - treated_mock <- mockery::mock(treated) - schedule_mock <- mockery::mock() - + + infection_outcome <- CompetingOutcome$new( + targeted_process = function(timestep, target){ + infection_process_resolved_hazard(timestep, target, variables, renderer, parameters) + }, + size = parameters$human_population + ) + mockery::stub(simulate_infection, 'boost_immunity', boost_immunity_mock) mockery::stub(simulate_infection, 'calculate_infections', infection_mock) - mockery::stub(simulate_infection, 'calculate_clinical_infections', clinical_infection_mock) - mockery::stub(simulate_infection, 'update_severe_disease', severe_infection_mock) - mockery::stub(simulate_infection, 'calculate_treated', treated_mock) - mockery::stub(simulate_infection, 'schedule_infections', schedule_mock) - mockery::stub(simulate_infection, 'incidence_renderer', mockery::mock()) - mockery::stub(simulate_infection, 'clinical_incidence_renderer', mockery::mock()) + simulate_infection( variables, events, @@ -43,9 +38,10 @@ test_that('simulate_infection integrates different types of infection and schedu age, parameters, timestep, - renderer + renderer, + infection_outcome ) - + mockery::expect_args( boost_immunity_mock, 1, @@ -55,7 +51,7 @@ test_that('simulate_infection integrates different types of infection and schedu 5, parameters$ub ) - + mockery::expect_args( infection_mock, 1, @@ -63,9 +59,69 @@ test_that('simulate_infection integrates different types of infection and schedu bitten, parameters, renderer, - timestep + timestep, + infection_outcome + ) +}) + + +test_that('simulate_infection integrates different types of infection and scheduling', { + population <- 8 + timestep <- 5 + parameters <- get_parameters(list( + human_population = population + )) + events <- create_events(parameters) + renderer <- mock_render(timestep) + + age <- c(20, 24, 5, 39, 20, 24, 5, 39) * 365 + immunity <- c(.2, .3, .5, .9, .2, .3, .5, .9) + # asymptomatics <- mockery::mock() + variables <- list( + ib = individual::DoubleVariable$new(immunity), + id = individual::DoubleVariable$new(immunity), + # state = list(get_index_of = mockery::mock(asymptomatics, cycle = T)) + state = individual::CategoricalVariable$new(categories = c("S","A","U","D","Tr"), initial_values = rep("S", population))#list(get_index_of = mockery::mock(asymptomatics, cycle = T)) + ) + prob <- rep(0.5,population) + + infected <- individual::Bitset$new(population)$insert(c(1, 3, 5)) + clinical <- individual::Bitset$new(population)$insert(c(1, 3)) + clinical_infection_mock <- mockery::mock(clinical) + boost_immunity_mock <- mockery::mock() + severe <- individual::Bitset$new(population)$insert(1) + severe_infection_mock <- mockery::mock(severe) + treated <- individual::Bitset$new(population)$insert(3) + treated_mock <- mockery::mock(treated) + schedule_mock <- mockery::mock() + + + mockery::stub(infection_process_resolved_hazard, 'incidence_renderer', mockery::mock()) + mockery::stub(infection_process_resolved_hazard, 'boost_immunity', boost_immunity_mock) + mockery::stub(infection_process_resolved_hazard, 'calculate_clinical_infections', clinical_infection_mock) + mockery::stub(infection_process_resolved_hazard, 'update_severe_disease', severe_infection_mock) + mockery::stub(infection_process_resolved_hazard, 'calculate_treated', treated_mock) + mockery::stub(infection_process_resolved_hazard, 'schedule_infections', schedule_mock) + + infection_process_resolved_hazard( + timestep, + infected, + variables, + renderer, + parameters, + prob) + + + mockery::expect_args( + boost_immunity_mock, + 1, + variables$ica, + infected, + variables$last_boosted_ica, + 5, + parameters$uc ) - + mockery::expect_args( clinical_infection_mock, 1, @@ -75,7 +131,7 @@ test_that('simulate_infection integrates different types of infection and schedu renderer, timestep ) - + mockery::expect_args( severe_infection_mock, 1, @@ -85,7 +141,7 @@ test_that('simulate_infection integrates different types of infection and schedu parameters, renderer ) - + mockery::expect_args( treated_mock, 1, @@ -95,7 +151,7 @@ test_that('simulate_infection integrates different types of infection and schedu timestep, renderer ) - + mockery::expect_args( schedule_mock, 1, @@ -125,7 +181,7 @@ test_that('calculate_infections works various combinations of drug and vaccinati booster_coverage = matrix(1), booster_profile = list(rtss_booster_profile) ) - + variables <- list( state = individual::CategoricalVariable$new( c('D', 'S', 'A', 'U', 'Tr'), @@ -137,7 +193,7 @@ test_that('calculate_infections works various combinations of drug and vaccinati pev_profile = individual::IntegerVariable$new(c(-1, 1, 2, -1)), ib = individual::DoubleVariable$new(c(.2, .3, .5, .9)) ) - + immunity_mock <- mockery::mock(c(.2, .3, .4)) weibull_mock <- mockery::mock(.2) vaccine_antibodies_mock <- mockery::mock(c(2, 3)) @@ -148,7 +204,7 @@ test_that('calculate_infections works various combinations of drug and vaccinati mockery::stub(calculate_infections, 'calculate_pev_antibodies', vaccine_antibodies_mock) mockery::stub(calculate_infections, 'calculate_pev_efficacy', vaccine_efficacy_mock) mockery::stub(calculate_infections, 'bernoulli_multi_p', bernoulli_mock) - + # remove randomness from vaccine parameters mockery::stub( calculate_infections, @@ -158,19 +214,27 @@ test_that('calculate_infections works various combinations of drug and vaccinati }, depth = 4 ) - + bitten_humans <- individual::Bitset$new(4)$insert(c(1, 2, 3, 4)) - + + infection_outcome <- CompetingOutcome$new( + targeted_process = function(timestep, target){ + infection_process_resolved_hazard(timestep, target, variables, renderer, parameters) + }, + size = parameters$human_population + ) + infections <- calculate_infections( variables, - bitten_humans, + bitten_humans, parameters, mock_render(timestep), - timestep + timestep, + infection_outcome = infection_outcome ) - - expect_equal(infections$to_vector(), 3) - + + expect_equal(sum(infections!=0), 3) + mockery::expect_args(immunity_mock, 1, c(.3, .5, .9), parameters) mockery::expect_args( weibull_mock, @@ -179,7 +243,7 @@ test_that('calculate_infections works various combinations of drug and vaccinati parameters$drug_prophylaxis_shape[[2]], parameters$drug_prophylaxis_scale[[2]] ) - + mockery::expect_args( vaccine_antibodies_mock, 1, @@ -198,18 +262,12 @@ test_that('calculate_infections works various combinations of drug and vaccinati c(rtss_profile$beta, rtss_booster_profile$beta), c(rtss_profile$alpha, rtss_booster_profile$alpha) ) - mockery::expect_args( - bernoulli_mock, - 1, - c(.2 * .8 * .8, .3 * .7, .4) - ) - }) test_that('calculate_clinical_infections correctly samples clinically infected', { timestep <- 5 parameters <- get_parameters() - + variables <- list( ica = individual::DoubleVariable$new(c(.2, .3, .5, .9)), icm = individual::DoubleVariable$new(c(.2, .3, .5, .9)), @@ -217,25 +275,25 @@ test_that('calculate_clinical_infections correctly samples clinically infected', last_boosted_ica = individual::DoubleVariable$new(c(-1, -1, 1, -1)), last_boosted_id = individual::DoubleVariable$new(c(-1, -1, 1, -1)) ) - + immunity_mock <- mockery::mock(c(.2, .3, .4)) boost_mock <- mockery::mock() mockery::stub(calculate_clinical_infections, 'boost_immunity', boost_mock) - + mockery::stub(calculate_clinical_infections, 'clinical_immunity', immunity_mock) bernoulli_mock <- mockery::mock(c(1, 3)) mockery::stub(calculate_clinical_infections, 'bernoulli_multi_p', bernoulli_mock) - + infections <- individual::Bitset$new(4)$insert(c(2, 3, 4)) - + clinical_infections <- calculate_clinical_infections( variables, infections, parameters ) - + expect_equal(clinical_infections$to_vector(), c(2, 4)) - + mockery::expect_args( immunity_mock, 1, @@ -243,7 +301,7 @@ test_that('calculate_clinical_infections correctly samples clinically infected', c(.3, .5, .9), parameters ) - + mockery::expect_args( bernoulli_mock, 1, @@ -264,10 +322,10 @@ test_that('calculate_treated correctly samples treated and updates the drug stat drug = list(queue_update = mockery::mock()), drug_time = list(queue_update = mockery::mock()) ) - + recovery_mock <- mockery::mock() mockery::stub(calculate_treated, 'recovery$schedule', recovery_mock) - + seek_treatment <- individual::Bitset$new(4)$insert(c(1, 2, 4)) mockery::stub( calculate_treated, @@ -279,7 +337,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat bernoulli_mock <- mockery::mock(c(1, 3)) mockery::stub(calculate_treated, 'bernoulli_multi_p', bernoulli_mock) mockery::stub(calculate_treated, 'log_uniform', mockery::mock(c(3, 4))) - + clinical_infections <- individual::Bitset$new(4) clinical_infections$insert(c(1, 2, 3, 4)) calculate_treated( @@ -289,7 +347,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat timestep, mock_render(timestep) ) - + mockery::expect_args( sample_mock, 1, @@ -298,13 +356,13 @@ test_that('calculate_treated correctly samples treated and updates the drug stat c(.25, .25), TRUE ) - + mockery::expect_args( bernoulli_mock, 1, parameters$drug_efficacy[c(2, 1, 1, 1)] ) - + expect_bitset_update(variables$state$queue_update, 'Tr', c(1, 4)) expect_bitset_update( variables$infectivity$queue_update, @@ -316,7 +374,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat }) test_that('calculate_treated correctly samples treated and updates the drug state when resistance set', { - + parameters <- get_parameters() parameters <- set_drugs(parameters = parameters, drugs = list(AL_params, SP_AQ_params)) parameters <- set_clinical_treatment(parameters = parameters, drug = 1, timesteps = 1, coverages = 0.25) @@ -330,7 +388,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat early_treatment_failure_probability = 0.2, late_clinical_failure_probability = 0, late_parasitological_failure_probability = 0, - reinfection_during_prophylaxis_probability = 0, + reinfection_during_prophylaxis_probability = 0, slow_parasite_clearance_time = 10) parameters <- set_antimalarial_resistance(parameters = parameters, drug = 2, @@ -341,9 +399,9 @@ test_that('calculate_treated correctly samples treated and updates the drug stat early_treatment_failure_probability = 0.9, late_clinical_failure_probability = 0, late_parasitological_failure_probability = 0, - reinfection_during_prophylaxis_probability = 0, + reinfection_during_prophylaxis_probability = 0, slow_parasite_clearance_time = 15) - + clinical_infections <- individual::Bitset$new(20)$insert(1:20) timestep <- 5 events <- create_events(parameters) @@ -355,22 +413,22 @@ test_that('calculate_treated correctly samples treated and updates the drug stat dt = list(queue_update = mockery::mock()) ) renderer <- individual::Render$new(timesteps = timestep) - + # Set up seek_treatment mock and instruct calculate_treated() to return it when sample_bitset() called: seek_treatment <- individual::Bitset$new(20)$insert(c(1:10)) seek_treatment_mock <- mockery::mock(seek_treatment) mockery::stub(where = calculate_treated, what = 'sample_bitset', how = seek_treatment_mock) - + # Set up drugs mock and instruct it to return it when sample.int() called: mock_drugs <- mockery::mock(c(2, 1, 1, 1, 2, 2, 2, 1, 2, 1)) mockery::stub(calculate_treated, 'sample.int', mock_drugs) - + # Set up bernoulli mock and instruct calculate_treated to return it when bernoulli_multi_p() called: bernoulli_mock <- mockery::mock(c(1, 2, 3, 4, 5, 6, 7, 8, 9), c(1, 2, 3, 4, 5, 6, 7), c(1)) mockery::stub(calculate_treated, 'bernoulli_multi_p', bernoulli_mock) - + calculate_treated( variables, clinical_infections, @@ -378,7 +436,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat timestep, renderer ) - + mockery::expect_args( mock_drugs, 1, @@ -387,38 +445,38 @@ test_that('calculate_treated correctly samples treated and updates the drug stat c(.25, .25), TRUE ) - + mockery::expect_args( seek_treatment_mock, 1, clinical_infections, 0.5 ) - + mockery::expect_args( bernoulli_mock, 1, c(0.9, 0.95, 0.95, 0.95, 0.9, 0.9, 0.9, 0.95, 0.9, 0.95) ) - + mockery::expect_args( bernoulli_mock, 2, c(0.73, 0.9, 0.9, 0.9, 0.73, 0.73, 0.73, 0.9, 0.73) ) - + mockery::expect_args( bernoulli_mock, 2, 1 - (unlist(parameters$artemisinin_resistance_proportion[c(2, 1, 1, 1, 2, 2, 2, 1, 2)]) * unlist(parameters$early_treatment_failure_probability[c(2, 1, 1, 1, 2, 2, 2, 1, 2)])) ) - + mockery::expect_args( bernoulli_mock, 3, unlist(parameters$artemisinin_resistance_proportion[c(2, 1, 1, 1, 2, 2, 2)]) * unlist(parameters$slow_parasite_clearance_probability[c(2, 1, 1, 1, 2, 2, 2)]) ) - + expect_bitset_update(variables$state$queue_update, 'Tr', c(1, 2, 3, 4, 5, 6, 7)) expect_bitset_update( variables$infectivity$queue_update, @@ -432,7 +490,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat }) test_that('calculate_treated correctly samples treated and updates the drug state when resistance not set for all drugs', { - + # Establish the parameters parameters <- get_parameters() parameters <- set_drugs(parameters = parameters, drugs = list(AL_params, SP_AQ_params)) @@ -447,18 +505,18 @@ test_that('calculate_treated correctly samples treated and updates the drug stat early_treatment_failure_probability = 0.3, late_clinical_failure_probability = 0, late_parasitological_failure_probability = 0, - reinfection_during_prophylaxis_probability = 0, + reinfection_during_prophylaxis_probability = 0, slow_parasite_clearance_time = 20) - + # Establish Bitset of clinically infected individuals clinical_infections <- individual::Bitset$new(20)$insert(1:20) - + # Set the timestep to 5: timestep <- 5 - + # Establish the events: events <- create_events(parameters) - + # Establish list of variables used in calculate_treated() using mocks: variables <- list( state = list(queue_update = mockery::mock()), @@ -467,30 +525,30 @@ test_that('calculate_treated correctly samples treated and updates the drug stat drug_time = list(queue_update = mockery::mock()), dt = list(queue_update = mockery::mock()) ) - + # Create a Bitset of individuals seeking treatment individuals: seek_treatment <- individual::Bitset$new(20)$insert(c(1:10)) - + # Create a mock of seek_treatment: seek_treatment_mock <- mockery::mock(seek_treatment) - + # Specify that, when calculate_treated() calls sample_bitset(), return the seek_treatment_mock: mockery::stub(where = calculate_treated, what = 'sample_bitset', how = seek_treatment_mock) - + # Create a mock_drugs object (5 of each drug): mock_drugs <- mockery::mock(c(2, 1, 1, 1, 2, 2, 2, 1, 2, 1)) - + # Specify that when calculate_treated() calls sample.int(), it returns mock_drugs: mockery::stub(calculate_treated, 'sample.int', mock_drugs) - + # Create a bernoulli_mock of i) individuals susceptible, and ii) individuals successfully treated: bernoulli_mock <- mockery::mock(c(1, 2, 3, 4, 5, 6, 7, 8, 9), c(1, 2, 3, 4, 5, 6, 7), c(1)) - + # Specify that when calculate_treated() calls bernoulli_multi_p() it returns the bernoulli_mock: mockery::stub(calculate_treated, 'bernoulli_multi_p', bernoulli_mock) - + # Run the calculate_treated() function now the mocks and stubs are established: calculate_treated( variables, @@ -499,7 +557,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat timestep, mock_render(timestep) ) - + # Check that mock_drugs was called only once, and that the arguments used in the function call # mock_drugs() was used in (sample.int()) match those expected: mockery::expect_args( @@ -510,7 +568,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat c(.25, .25), TRUE ) - + # Check that seek_treatment_mock was called only once, and that the arguments used in the function # call mock_drugs() was used in (sample_bitset()) match those expected: mockery::expect_args( @@ -519,7 +577,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat clinical_infections, 0.5 ) - + # Check that the first time bernoulli_mock was called the arguments used in the function # call bernoulli_mock was involved in (bernoulli_multi_p()) match those expected: mockery::expect_args( @@ -527,7 +585,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat 1, parameters$drug_efficacy[c(2, 1, 1, 1, 2, 2, 2, 1, 2, 1)] ) - + # Check that the secnd time bernoulli_mock was called (bernoulli_multi_p()) the arguments used in # the function it was called in are as expected: mockery::expect_args( @@ -535,14 +593,14 @@ test_that('calculate_treated correctly samples treated and updates the drug stat 2, c(0.76, 1, 1, 1, 0.76, 0.76, 0.76, 1, 0.76) ) - + # Check that update queued that updates the state of successfully treated individuals to "Tr" expect_bitset_update( variables$state$queue_update, 'Tr', c(1, 2, 3, 4, 5, 6, 7) ) - + # Check that update queued that updates the infectivity of successfully treated individuals to "Tr" # to their new infectivity (drug concentration x infectivity of "D" compartment) expect_bitset_update( @@ -550,7 +608,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat parameters$cd * parameters$drug_rel_c[c(2, 1, 1, 1, 2, 2, 2)], c(1, 2, 3, 4, 5, 6, 7) ) - + # Check that update queued that updates the drug of successfully treated individuals to the drug # they took: expect_bitset_update( @@ -558,7 +616,7 @@ test_that('calculate_treated correctly samples treated and updates the drug stat c(2, 1, 1, 1, 2, 2, 2), c(1, 2, 3, 4, 5, 6, 7) ) - + # Check that update queued that updates the drug time of successfully treated individuals to the # simulated/mocked time step (5) expect_bitset_update( @@ -566,54 +624,54 @@ test_that('calculate_treated correctly samples treated and updates the drug stat 5, c(1, 2, 3, 4, 5, 6, 7) ) - + # Check that update queued for dt for the non-slow parasite clearance individuals is correct: expect_bitset_update( variables$dt$queue_update, parameters$dt, - c(2, 3, 4, 5, 6, 7), + c(2, 3, 4, 5, 6, 7), 1) - + # Check that update queued for dt for the slow parasite clearance individuals is correct: expect_bitset_update( variables$dt$queue_update, unlist(parameters$dt_slow_parasite_clearance), - c(1), + c(1), 2) - + }) test_that('schedule_infections correctly schedules new infections', { parameters <- get_parameters(list(human_population = 20)) variables <- create_variables(parameters) - + infections <- individual::Bitset$new(20)$insert(1:20) clinical_infections <- individual::Bitset$new(20)$insert(5:15) treated <- individual::Bitset$new(20)$insert(7:12) - + infection_mock <- mockery::mock() asymp_mock <- mockery::mock() - + mockery::stub(schedule_infections, 'update_infection', infection_mock) mockery::stub(schedule_infections, 'update_to_asymptomatic_infection', asymp_mock) - + schedule_infections( variables, clinical_infections, treated, infections, parameters, - 42 + 42 ) - + actual_infected <- mockery::mock_args(infection_mock)[[1]][[5]]$to_vector() actual_asymp_infected <- mockery::mock_args(asymp_mock)[[1]][[4]]$to_vector() - + expect_equal( actual_infected, c(5, 6, 13, 14, 15) ) - + expect_equal( actual_asymp_infected, c(1, 2, 3, 4, 16, 17, 18, 19, 20) @@ -625,7 +683,7 @@ test_that('prophylaxis is considered for medicated humans', { parameters <- set_drugs(parameters, list(AL_params, DHA_PQP_params)) events <- create_events(parameters) timestep <- 50 - + variables = list( state = individual::CategoricalVariable$new( c('D', 'S', 'A', 'U', 'Tr'), @@ -637,21 +695,29 @@ test_that('prophylaxis is considered for medicated humans', { pev_profile = individual::IntegerVariable$new(c(-1, -1, -1, -1)), ib = individual::DoubleVariable$new(c(.2, .3, .5, .9)) ) - + bitten <- individual::Bitset$new(4)$insert(seq(4)) m <- mockery::mock(seq(3)) mockery::stub(calculate_infections, 'bernoulli_multi_p', m) - - calculate_infections( + + infection_outcome <- CompetingOutcome$new( + targeted_process = function(timestep, target){ + infection_process_resolved_hazard(timestep, target, variables, renderer, parameters) + }, + size = parameters$human_population + ) + + infection_rates <- calculate_infections( variables, bitten, parameters, mock_render(timestep), - timestep + timestep, + infection_outcome ) - + expect_equal( - mockery::mock_args(m)[[1]][[1]], + rate_to_prob(infection_rates[infection_rates!=0]), c(2.491951e-07, 2.384032e-01, 5.899334e-01), tolerance = 1e-3 ) @@ -661,17 +727,17 @@ test_that('boost_immunity respects the delay period', { level <- c(2.4, 1.2, 0., 4.) immunity <- individual::DoubleVariable$new(level) last_boosted <- individual::DoubleVariable$new(c(11, 5, 1, 13)) - + level_mock <- mockery::mock() mockery::stub(boost_immunity, 'immunity_variable$queue_update', level_mock) - + last_mock <- mockery::mock() mockery::stub(boost_immunity, 'last_boosted_variable$queue_update', last_mock) - + index <- individual::Bitset$new(4)$insert(seq(4)) timestep <- 15 delay <- 4 - + boost_immunity( immunity, index, @@ -679,14 +745,14 @@ test_that('boost_immunity respects the delay period', { timestep, delay ) - + mockery::expect_args( level_mock, 1, c(3.4, 2.2, 1), seq(3) ) - + mockery::expect_args( last_mock, 1, @@ -699,18 +765,18 @@ test_that('boost_immunity respects the delay period', { level <- c(2.4, 1.2, 0., 4., 0.) immunity <- individual::DoubleVariable$new(level) last_boosted <- individual::DoubleVariable$new(c(11, 5, 1, 13, -1)) - + index <- individual::Bitset$new(5) index$insert(seq(5)) timestep <- 15 delay <- 4 - + level_mock <- mockery::mock() mockery::stub(boost_immunity, 'immunity_variable$queue_update', level_mock) - + last_mock <- mockery::mock() mockery::stub(boost_immunity, 'last_boosted_variable$queue_update', last_mock) - + boost_immunity( immunity, index, @@ -718,14 +784,14 @@ test_that('boost_immunity respects the delay period', { timestep, delay ) - + mockery::expect_args( level_mock, 1, c(3.4, 2.2, 1, 1), c(seq(3), 5) ) - + mockery::expect_args( last_mock, 1, @@ -738,18 +804,18 @@ test_that('boost_immunity does not update when there is no-one to update', { level <- c(2.4, 1.2, 0., 4., 0.) immunity <- individual::DoubleVariable$new(level) last_boosted <- individual::DoubleVariable$new(c(11, 5, 1, 13, -1)) - + index <- individual::Bitset$new(5) index$insert(seq(5)) timestep <- 15 delay <- 4 - + level_mock <- mockery::mock() mockery::stub(boost_immunity, 'immunity$queue_update', level_mock) - + last_mock <- mockery::mock() mockery::stub(boost_immunity, 'last_boosted$queue_update', last_mock) - + boost_immunity( immunity, index, @@ -771,11 +837,11 @@ test_that('update_severe_disease renders with no infections', { severe_incidence_rendering_max_ages = 5 * 365 )) variables <- create_variables(parameters) - + render_function <- mockery::mock() mockery::stub(update_severe_disease, 'incidence_renderer', render_function) empty <- individual::Bitset$new(population) - + update_severe_disease( timestep, empty, @@ -783,7 +849,7 @@ test_that('update_severe_disease renders with no infections', { parameters, renderer ) - + mockery::expect_args( render_function, 1, @@ -812,7 +878,7 @@ test_that('calculate_treated returns empty Bitset when there is no clinical trea early_treatment_failure_probability = 0.2, late_clinical_failure_probability = 0, late_parasitological_failure_probability = 0, - reinfection_during_prophylaxis_probability = 0, + reinfection_during_prophylaxis_probability = 0, slow_parasite_clearance_time = 10) clinical_infections <- individual::Bitset$new(20)$insert(1:20) timestep <- 5 @@ -824,13 +890,13 @@ test_that('calculate_treated returns empty Bitset when there is no clinical trea drug_time = list(queue_update = mockery::mock()) ) renderer <- individual::Render$new(timesteps = 10) - + treated <- calculate_treated(variables = variables, clinical_infections = clinical_infections, parameters = parameters, timestep = timestep, renderer = renderer) - + expect_identical(object = treated$size(), expected = 0, info = "Error: calculate_treated() returning non-zero number of treated individuals in the absence of clinical treatment") }) @@ -848,7 +914,7 @@ test_that('calculate_treated returns empty Bitset when the clinically_infected i early_treatment_failure_probability = 0.2, late_clinical_failure_probability = 0, late_parasitological_failure_probability = 0, - reinfection_during_prophylaxis_probability = 0, + reinfection_during_prophylaxis_probability = 0, slow_parasite_clearance_time = 10) clinical_infections <- individual::Bitset$new(20) timestep <- 5 @@ -860,13 +926,13 @@ test_that('calculate_treated returns empty Bitset when the clinically_infected i drug_time = list(queue_update = mockery::mock()) ) renderer <- individual::Render$new(timesteps = 10) - + treated <- calculate_treated(variables = variables, clinical_infections = clinical_infections, parameters = parameters, timestep = timestep, renderer = renderer) - + expect_identical(object = treated$size(), expected = 0, info = "Error: calculate_treated() returning non-zero number of treated individuals in the absence of clinically infected individuals") }) @@ -884,13 +950,13 @@ test_that('calculate_treated() returns an empty Bitset when the parameter list c drug_time = list(queue_update = mockery::mock()) ) renderer <- individual::Render$new(timesteps = 10) - + treated <- calculate_treated(variables = variables, clinical_infections = clinical_infections, parameters = parameters, timestep = timestep, renderer = renderer) - + expect_identical(object = treated$size(), expected = 0, info = "Error: calculate_treated() returning non-zero number of treated individuals in the absence of clinical treatment or resistance parameters") }) @@ -918,7 +984,7 @@ test_that('Number of treatment failures matches number of individuals treated wh early_treatment_failure_probability = 1, late_clinical_failure_probability = 0, late_parasitological_failure_probability = 0, - reinfection_during_prophylaxis_probability = 0, + reinfection_during_prophylaxis_probability = 0, slow_parasite_clearance_time = 10) parameters <- set_antimalarial_resistance(parameters = parameters, drug = 2, @@ -929,25 +995,25 @@ test_that('Number of treatment failures matches number of individuals treated wh early_treatment_failure_probability = 1, late_clinical_failure_probability = 0, late_parasitological_failure_probability = 0, - reinfection_during_prophylaxis_probability = 0, + reinfection_during_prophylaxis_probability = 0, slow_parasite_clearance_time = 20) - + clinical_infections <- individual::Bitset$new(100) clinical_infections$insert(sample.int(n = 100, size = round(runif(n = 1, min = 10, max = 100)), replace = FALSE)) timestep <- 5 events <- create_events(parameters) variables <- create_variables(parameters = parameters) renderer <- individual::Render$new(timesteps = 10) - + treated <- calculate_treated(variables = variables, clinical_infections = clinical_infections, parameters = parameters, timestep = timestep, renderer = renderer) - + expect_identical(renderer$to_dataframe()[timestep,'n_early_treatment_failure'], renderer$to_dataframe()[timestep,'n_treated'] - renderer$to_dataframe()[timestep,'n_drug_efficacy_failures'], info = "Error: Number of early treatment failures does not match number of treated individuals (minus drug efficacy failures) when artemisinin resistance proportion and - and early treatment failure probability both equal 1") + and early treatment failure probability both equal 1") }) test_that('calculate_treated() successfully adds additional resistance columns to the renderer', { @@ -963,9 +1029,9 @@ test_that('calculate_treated() successfully adds additional resistance columns t early_treatment_failure_probability = 0.5, late_clinical_failure_probability = 0, late_parasitological_failure_probability = 0, - reinfection_during_prophylaxis_probability = 0, + reinfection_during_prophylaxis_probability = 0, slow_parasite_clearance_time = 10) - + clinical_infections <- individual::Bitset$new(20)$insert(1:20) timestep <- 5 events <- create_events(parameters) @@ -977,13 +1043,13 @@ test_that('calculate_treated() successfully adds additional resistance columns t dt = list(queue_update = mockery::mock()) ) renderer <- individual::Render$new(timesteps = 10) - + treated <- calculate_treated(variables = variables, clinical_infections = clinical_infections, parameters = parameters, timestep = timestep, renderer = renderer) - + calculate_treated_column_names <- c("ft", "n_treated", "n_drug_efficacy_failures", diff --git a/tests/testthat/test-pev.R b/tests/testthat/test-pev.R index 09c4cf7d..6e114b1b 100644 --- a/tests/testthat/test-pev.R +++ b/tests/testthat/test-pev.R @@ -36,7 +36,7 @@ test_that('Mass vaccination strategy parameterisation works', { ), "all(coverages >= 0) && all(coverages <= 1) is not TRUE", fixed = TRUE ) - + expect_error( parameters <- set_mass_pev( parameters, @@ -150,6 +150,13 @@ test_that('Infection considers pev efficacy', { rep(.2, 4) ) + infection_outcome <- CompetingOutcome$new( + targeted_process = function(timestep, target){ + infection_process_resolved_hazard(timestep, target, variables, renderer, parameters) + }, + size = parameters$human_population + ) + # remove randomness from infection sampling bernoulli_mock <- mockery::mock(c(1, 2)) mockery::stub(calculate_infections, 'bernoulli_multi_p', bernoulli_mock) @@ -164,16 +171,17 @@ test_that('Infection considers pev efficacy', { depth = 4 ) - calculate_infections( + infection_rates <- calculate_infections( variables = variables, bitten_humans = individual::Bitset$new(4)$insert(seq(4)), parameters = parameters, renderer = mock_render(timestep), - timestep = timestep + timestep = timestep, + infection_outcome ) expect_equal( - mockery::mock_args(bernoulli_mock)[[1]][[1]], + rate_to_prob(infection_rates[infection_rates!=0]), c(0.590, 0.590, 0.215, 0.244), tolerance=1e-3 )