-
Notifications
You must be signed in to change notification settings - Fork 66
/
main.py
434 lines (389 loc) · 16.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import openai
#from langchain.embeddings import HuggingFaceEmbeddings
from langchain.embeddings import LocalAIEmbeddings
import uuid
import sys
from localagi import LocalAGI
from loguru import logger
from ascii_magic import AsciiArt
from duckduckgo_search import DDGS
from typing import Dict, List
import os
# these three lines swap the stdlib sqlite3 lib with the pysqlite3 package for chroma
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
from langchain.vectorstores import Chroma
from chromadb.config import Settings
import json
import os
from io import StringIO
# Parse arguments such as system prompt and batch mode
import argparse
parser = argparse.ArgumentParser(description='LocalAGI')
# System prompt
parser.add_argument('--system-prompt', dest='system_prompt', action='store',
help='System prompt to use')
# Batch mode
parser.add_argument('--prompt', dest='prompt', action='store', default=False,
help='Prompt mode')
# Interactive mode
parser.add_argument('--interactive', dest='interactive', action='store_true', default=False,
help='Interactive mode. Can be used with --prompt to start an interactive session')
# skip avatar creation
parser.add_argument('--skip-avatar', dest='skip_avatar', action='store_true', default=False,
help='Skip avatar creation')
# Reevaluate
parser.add_argument('--re-evaluate', dest='re_evaluate', action='store_true', default=False,
help='Reevaluate if another action is needed or we have completed the user request')
# Postprocess
parser.add_argument('--postprocess', dest='postprocess', action='store_true', default=False,
help='Postprocess the reasoning')
# Subtask context
parser.add_argument('--subtask-context', dest='subtaskContext', action='store_true', default=False,
help='Include context in subtasks')
# Search results number
parser.add_argument('--search-results', dest='search_results', type=int, action='store', default=2,
help='Number of search results to return')
# Plan message
parser.add_argument('--plan-message', dest='plan_message', action='store',
help="What message to use during planning",
)
DEFAULT_PROMPT="floating hair, portrait, ((loli)), ((one girl)), cute face, hidden hands, asymmetrical bangs, beautiful detailed eyes, eye shadow, hair ornament, ribbons, bowties, buttons, pleated skirt, (((masterpiece))), ((best quality)), colorful|((part of the head)), ((((mutated hands and fingers)))), deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, mutated, extra limb, ugly, poorly drawn hands, missing limb, blurry, floating limbs, disconnected limbs, malformed hands, blur, out of focus, long neck, long body, Octane renderer, lowres, bad anatomy, bad hands, text"
DEFAULT_API_BASE = os.environ.get("DEFAULT_API_BASE", "http://api:8080")
# TTS api base
parser.add_argument('--tts-api-base', dest='tts_api_base', action='store', default=DEFAULT_API_BASE,
help='TTS api base')
# LocalAI api base
parser.add_argument('--localai-api-base', dest='localai_api_base', action='store', default=DEFAULT_API_BASE,
help='LocalAI api base')
# Images api base
parser.add_argument('--images-api-base', dest='images_api_base', action='store', default=DEFAULT_API_BASE,
help='Images api base')
# Embeddings api base
parser.add_argument('--embeddings-api-base', dest='embeddings_api_base', action='store', default=DEFAULT_API_BASE,
help='Embeddings api base')
# Functions model
parser.add_argument('--functions-model', dest='functions_model', action='store', default="functions",
help='Functions model')
# Embeddings model
parser.add_argument('--embeddings-model', dest='embeddings_model', action='store', default="all-MiniLM-L6-v2",
help='Embeddings model')
# LLM model
parser.add_argument('--llm-model', dest='llm_model', action='store', default="gpt-4",
help='LLM model')
# Voice model
parser.add_argument('--tts-model', dest='tts_model', action='store', default="en-us-kathleen-low.onnx",
help='TTS model')
# Stable diffusion model
parser.add_argument('--stablediffusion-model', dest='stablediffusion_model', action='store', default="stablediffusion",
help='Stable diffusion model')
# Stable diffusion prompt
parser.add_argument('--stablediffusion-prompt', dest='stablediffusion_prompt', action='store', default=DEFAULT_PROMPT,
help='Stable diffusion prompt')
# Force action
parser.add_argument('--force-action', dest='force_action', action='store', default="",
help='Force an action')
# Debug mode
parser.add_argument('--debug', dest='debug', action='store_true', default=False,
help='Debug mode')
# Critic mode
parser.add_argument('--critic', dest='critic', action='store_true', default=False,
help='Enable critic')
# Parse arguments
args = parser.parse_args()
STABLEDIFFUSION_MODEL = os.environ.get("STABLEDIFFUSION_MODEL", args.stablediffusion_model)
STABLEDIFFUSION_PROMPT = os.environ.get("STABLEDIFFUSION_PROMPT", args.stablediffusion_prompt)
FUNCTIONS_MODEL = os.environ.get("FUNCTIONS_MODEL", args.functions_model)
EMBEDDINGS_MODEL = os.environ.get("EMBEDDINGS_MODEL", args.embeddings_model)
LLM_MODEL = os.environ.get("LLM_MODEL", args.llm_model)
VOICE_MODEL= os.environ.get("TTS_MODEL",args.tts_model)
STABLEDIFFUSION_MODEL = os.environ.get("STABLEDIFFUSION_MODEL",args.stablediffusion_model)
STABLEDIFFUSION_PROMPT = os.environ.get("STABLEDIFFUSION_PROMPT", args.stablediffusion_prompt)
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", "/data")
SYSTEM_PROMPT = ""
if os.environ.get("SYSTEM_PROMPT") or args.system_prompt:
SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", args.system_prompt)
LOCALAI_API_BASE = args.localai_api_base
TTS_API_BASE = args.tts_api_base
IMAGE_API_BASE = args.images_api_base
EMBEDDINGS_API_BASE = args.embeddings_api_base
# Set log level
LOG_LEVEL = "INFO"
def my_filter(record):
return record["level"].no >= logger.level(LOG_LEVEL).no
logger.remove()
logger.add(sys.stderr, filter=my_filter)
if args.debug:
LOG_LEVEL = "DEBUG"
logger.debug("Debug mode on")
FUNCTIONS_MODEL = os.environ.get("FUNCTIONS_MODEL", args.functions_model)
EMBEDDINGS_MODEL = os.environ.get("EMBEDDINGS_MODEL", args.embeddings_model)
LLM_MODEL = os.environ.get("LLM_MODEL", args.llm_model)
VOICE_MODEL= os.environ.get("TTS_MODEL",args.tts_model)
STABLEDIFFUSION_MODEL = os.environ.get("STABLEDIFFUSION_MODEL",args.stablediffusion_model)
STABLEDIFFUSION_PROMPT = os.environ.get("STABLEDIFFUSION_PROMPT", args.stablediffusion_prompt)
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", "/data")
SYSTEM_PROMPT = ""
if os.environ.get("SYSTEM_PROMPT") or args.system_prompt:
SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", args.system_prompt)
LOCALAI_API_BASE = args.localai_api_base
TTS_API_BASE = args.tts_api_base
IMAGE_API_BASE = args.images_api_base
EMBEDDINGS_API_BASE = args.embeddings_api_base
## Constants
REPLY_ACTION = "reply"
PLAN_ACTION = "plan"
embeddings = LocalAIEmbeddings(model=EMBEDDINGS_MODEL,openai_api_base=EMBEDDINGS_API_BASE)
chroma_client = Chroma(collection_name="memories", persist_directory="db", embedding_function=embeddings)
# Function to create images with LocalAI
def display_avatar(agi, input_text=STABLEDIFFUSION_PROMPT, model=STABLEDIFFUSION_MODEL):
image_url = agi.get_avatar(input_text, model)
# convert the image to ascii art
my_art = AsciiArt.from_url(image_url)
my_art.to_terminal()
## This function is called to ask the user if does agree on the action to take and execute
def ask_user_confirmation(action_name, action_parameters):
logger.info("==> Ask user confirmation")
logger.info("==> action_name: {action_name}", action_name=action_name)
logger.info("==> action_parameters: {action_parameters}", action_parameters=action_parameters)
# Ask via stdin
logger.info("==> Do you want to execute the action? (y/n)")
user_input = input()
if user_input == "y":
logger.info("==> Executing action")
return True
else:
logger.info("==> Skipping action")
return False
### Agent capabilities
### These functions are called by the agent to perform actions
###
def save(memory, agent_actions={}, localagi=None):
q = json.loads(memory)
logger.info(">>> saving to memories: ")
logger.info(q["content"])
chroma_client.add_texts([q["content"]],[{"id": str(uuid.uuid4())}])
chroma_client.persist()
return f"The object was saved permanently to memory."
def search_memory(query, agent_actions={}, localagi=None):
q = json.loads(query)
docs = chroma_client.similarity_search(q["reasoning"])
text_res="Memories found in the database:\n"
for doc in docs:
text_res+="- "+doc.page_content+"\n"
#if args.postprocess:
# return post_process(text_res)
#return text_res
return localagi.post_process(text_res)
# write file to disk with content
def save_file(arg, agent_actions={}, localagi=None):
arg = json.loads(arg)
filename = arg["filename"]
content = arg["content"]
# create persistent dir if does not exist
if not os.path.exists(PERSISTENT_DIR):
os.makedirs(PERSISTENT_DIR)
# write the file in the directory specified
filename = os.path.join(PERSISTENT_DIR, filename)
with open(filename, 'w') as f:
f.write(content)
return f"File {filename} saved successfully."
def ddg(query: str, num_results: int, backend: str = "api") -> List[Dict[str, str]]:
"""Run query through DuckDuckGo and return metadata.
Args:
query: The query to search for.
num_results: The number of results to return.
Returns:
A list of dictionaries with the following keys:
snippet - The description of the result.
title - The title of the result.
link - The link to the result.
"""
with DDGS() as ddgs:
results = ddgs.text(
query,
backend=backend,
)
if results is None:
return [{"Result": "No good DuckDuckGo Search Result was found"}]
def to_metadata(result: Dict) -> Dict[str, str]:
if backend == "news":
return {
"date": result["date"],
"title": result["title"],
"snippet": result["body"],
"source": result["source"],
"link": result["url"],
}
return {
"snippet": result["body"],
"title": result["title"],
"link": result["href"],
}
formatted_results = []
for i, res in enumerate(results, 1):
if res is not None:
formatted_results.append(to_metadata(res))
if len(formatted_results) == num_results:
break
return formatted_results
## Search on duckduckgo
def search_duckduckgo(a, agent_actions={}, localagi=None):
a = json.loads(a)
list=ddg(a["query"], args.search_results)
text_res=""
for doc in list:
text_res+=f"""{doc["link"]}: {doc["title"]} {doc["snippet"]}\n"""
#if args.postprocess:
# return post_process(text_res)
return text_res
#l = json.dumps(list)
#return l
### End Agent capabilities
###
### Agent action definitions
agent_actions = {
"search_internet": {
"function": search_duckduckgo,
"plannable": True,
"description": 'For searching the internet with a query, the assistant replies with the action "search_internet" and the query to search.',
"signature": {
"name": "search_internet",
"description": """For searching internet.""",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "information to save"
},
},
}
},
},
"save_file": {
"function": save_file,
"plannable": True,
"description": 'The assistant replies with the action "save_file", the filename and content to save for writing a file to disk permanently. This can be used to store the result of complex actions locally.',
"signature": {
"name": "save_file",
"description": """For saving a file to disk with content.""",
"parameters": {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "information to save"
},
"content": {
"type": "string",
"description": "information to save"
},
},
}
},
},
"save_memory": {
"function": save,
"plannable": True,
"description": 'The assistant replies with the action "save_memory" and the string to remember or store an information that thinks it is relevant permanently.',
"signature": {
"name": "save_memory",
"description": """Save or store informations into memory.""",
"parameters": {
"type": "object",
"properties": {
"content": {
"type": "string",
"description": "information to save"
},
},
"required": ["content"]
}
},
},
"search_memory": {
"function": search_memory,
"plannable": True,
"description": 'The assistant replies with the action "search_memory" for searching between its memories with a query term.',
"signature": {
"name": "search_memory",
"description": """Search in memory""",
"parameters": {
"type": "object",
"properties": {
"reasoning": {
"type": "string",
"description": "reasoning behind the intent"
},
},
"required": ["reasoning"]
}
},
},
}
if __name__ == "__main__":
conversation_history = []
# Create a LocalAGI instance
logger.info("Creating LocalAGI instance")
localagi = LocalAGI(
agent_actions=agent_actions,
llm_model=LLM_MODEL,
tts_model=VOICE_MODEL,
tts_api_base=TTS_API_BASE,
functions_model=FUNCTIONS_MODEL,
api_base=LOCALAI_API_BASE,
stablediffusion_api_base=IMAGE_API_BASE,
stablediffusion_model=STABLEDIFFUSION_MODEL,
force_action=args.force_action,
plan_message=args.plan_message,
)
# Set a system prompt if SYSTEM_PROMPT is set
if SYSTEM_PROMPT != "":
conversation_history.append({
"role": "system",
"content": SYSTEM_PROMPT
})
logger.info("Welcome to LocalAGI")
# Skip avatar creation if --skip-avatar is set
if not args.skip_avatar:
logger.info("Creating avatar, please wait...")
display_avatar(localagi)
actions = ""
for action in agent_actions:
actions+=" '"+action+"'"
logger.info("LocalAGI internally can do the following actions:{actions}", actions=actions)
if not args.prompt:
logger.info(">>> Interactive mode <<<")
else:
logger.info(">>> Prompt mode <<<")
logger.info(args.prompt)
# IF in prompt mode just evaluate, otherwise loop
if args.prompt:
conversation_history=localagi.evaluate(
args.prompt,
conversation_history,
critic=args.critic,
re_evaluate=args.re_evaluate,
# Enable to lower context usage but increases LLM calls
postprocess=args.postprocess,
subtaskContext=args.subtaskContext,
)
localagi.tts_play(conversation_history[-1]["content"])
if not args.prompt or args.interactive:
# TODO: process functions also considering the conversation history? conversation history + input
logger.info(">>> Ready! What can I do for you? ( try with: plan a roadtrip to San Francisco ) <<<")
while True:
user_input = input(">>> ")
# we are going to use the args to change the evaluation behavior
conversation_history=localagi.evaluate(
user_input,
conversation_history,
critic=args.critic,
re_evaluate=args.re_evaluate,
# Enable to lower context usage but increases LLM calls
postprocess=args.postprocess,
subtaskContext=args.subtaskContext,
)
localagi.tts_play(conversation_history[-1]["content"])