forked from henryhungle/MTN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_handler.py
executable file
·285 lines (272 loc) · 11.4 KB
/
data_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python
import copy
import logging
import sys
import time
import os
import six
import pickle
import json
import numpy as np
import pdb
import torch
from data_utils import *
def get_npy_shape(filename):
# read npy file header and return its shape
with open(filename, 'rb') as f:
if filename.endswith('.pkl'):
shape = pickle.load(f).shape
else:
major, minor = np.lib.format.read_magic(f)
shape, fortran, dtype = np.lib.format.read_array_header_1_0(f)
return shape
def align_vocab(pretrained_vocab, vocab, pretrained_weights):
for module, module_wt in pretrained_weights.items():
for layer, layer_wt in module_wt.items():
if 'embed' in layer:
print("Aligning word emb for layer {} in module {}...".format(layer, module))
print("Pretrained emb of shape {}".format(layer_wt.shape))
emb_dim = layer_wt.shape[1]
embs = np.zeros((len(vocab), emb_dim), dtype=np.float32)
count = 0
for k,v in vocab.items():
if k in pretrained_vocab:
embs[v] = layer_wt[pretrained_vocab[k]]
else:
count += 1
pretrained_weights[module][layer] = embs
print("Aligned emb of shape {}".format(embs.shape))
print("Number of unmatched words {}".format(count))
return pretrained_weights
def get_vocabulary(dataset_file, cutoff=1, include_caption='none'):
vocab = {'<unk>':0, '<blank>':1, '<sos>':2, '<eos>':3}
dialog_data = json.load(open(dataset_file, 'r'))
word_freq = {}
for dialog in dialog_data['dialogs']:
if include_caption == 'caption' or include_caption == 'summary' or include_caption == 'caption,summary':
if include_caption == 'caption' or include_caption == 'summary':
caption = dialog[include_caption]
else:
caption = dialog['caption'] + dialog['summary']
for word in caption.split():
if word in word_freq:
word_freq[word] += 1
else:
word_freq[word] = 1
for key in ['question', 'answer']:
for turn in dialog['dialog']:
for word in turn[key].split():
if word in word_freq:
word_freq[word] += 1
else:
word_freq[word] = 1
cutoffs = [1,2,3,4,5]
for cutoff in cutoffs:
vocab = {'<unk>':0, '<blank>':1, '<sos>':2, '<eos>':3}
for word, freq in word_freq.items():
if freq > cutoff:
vocab[word] = len(vocab)
print("{} words for cutoff {}".format(len(vocab), cutoff))
return vocab
def words2ids(str_in, vocab):
words = str_in.split()
sentence = np.ndarray(len(words)+2, dtype=np.int32)
sentence[0]=vocab['<sos>']
for i,w in enumerate(words):
if w in vocab:
sentence[i+1] = vocab[w]
else:
sentence[i+1] = vocab['<unk>']
sentence[-1]=vocab['<eos>']
return sentence
# Load text data
def load(fea_types, fea_path, dataset_file, vocab, include_caption='none', separate_caption=False, max_history_length=-1, merge_source=False, undisclosed_only=False):
dialog_data = json.load(open(dataset_file, 'r'))
dialog_list = []
vid_set = set()
qa_id = 0
for dialog in dialog_data['dialogs']:
if include_caption == 'caption' or include_caption == 'summary':
caption = words2ids(dialog[include_caption], vocab)
elif include_caption == 'caption,summary':
caption = words2ids(dialog['caption'] + dialog['summary'], vocab)
else:
caption = np.array([vocab['<blank>']], dtype=np.int32)
questions = [words2ids(d['question'], vocab) for d in dialog['dialog']]
answers = [words2ids(d['answer'], vocab) for d in dialog['dialog']]
qa_pair = [np.concatenate((q,a)).astype(np.int32) for q,a in zip(questions, answers)]
vid = dialog['image_id']
vid_set.add(vid)
if undisclosed_only:
it = range(len(questions)-1,len(questions))
else:
it = range(len(questions))
for n in it:
if undisclosed_only:
assert dialog['dialog'][n]['answer'] == '__UNDISCLOSED__'
if (include_caption == 'caption' or include_caption == 'summary' or include_caption == 'caption,summary') and separate_caption:
history = [np.array([vocab['<blank>']], dtype=np.int32)]
else:
history = [caption]
if max_history_length > 0:
start_turn_idx = max(0, n - max_history_length)
else:
start_turn_idx = 0
for m in range(start_turn_idx, n):
history = np.append(history, qa_pair[m])
if type(history) == list: #only including caption i.e. no dialogue history
history = history[0]
question = questions[n]
if merge_source:
question = np.concatenate((caption, history, question))
answer_in = answers[n][:-1]
answer_out = answers[n][1:]
item = [vid, qa_id, history, question, answer_in, answer_out]
if (include_caption == 'caption' or include_caption == 'summary' or include_caption == 'caption,summary') and separate_caption:
item.append(caption)
dialog_list.append(item)
qa_id += 1
data = {'dialogs': dialog_list, 'vocab': vocab, 'features': [],
'original': dialog_data}
if fea_types is not None and fea_types[0] != 'none':
for ftype in fea_types:
basepath = fea_path.replace('<FeaType>', ftype)
features = {}
for vid in vid_set:
filepath = basepath.replace('<ImageID>', vid)
shape = get_npy_shape(filepath)
features[vid] = (filepath, shape[0])
data['features'].append(features)
else:
data['features'] = None
return data
def make_batch_indices(data, batchsize=100, max_length=20, separate_caption=False):
# Setup mini-batches
idxlist = []
for n, dialog in enumerate(data['dialogs']):
vid = dialog[0] # video ID
x_len = []
if data['features'] is not None:
for feat in data['features']:
value = feat[vid]
size = value[1] if isinstance(value, tuple) else len(value)
x_len.append(size)
else:
x_len.append(0)
qa_id = dialog[1] # QA-pair id
h_len = len(dialog[2]) # history length
q_len = len(dialog[3]) # question length
a_len = len(dialog[4]) # answer length
if separate_caption:
c_len = len(dialog[6])
idxlist.append((vid, qa_id, x_len, h_len, q_len, a_len, c_len))
else:
idxlist.append((vid, qa_id, x_len, h_len, q_len, a_len))
if batchsize > 1:
if separate_caption:
idxlist = sorted(idxlist, key=lambda s:(-s[3],-s[6],-s[2][0],-s[4],-s[5]))
else:
idxlist = sorted(idxlist, key=lambda s:(-s[3],-s[2][0],-s[4],-s[5]))
n_samples = len(idxlist)
batch_indices = []
bs = 0
while bs < n_samples:
in_len = idxlist[bs][3]
bsize = int(batchsize / int(in_len / max_length + 1))
be = min(bs + bsize, n_samples) if bsize > 0 else bs + 1
#pdb.set_trace()
x_len = [ max(idxlist[bs:be], key=lambda s:s[2][j])[2][j]
for j in six.moves.range(len(x_len))]
h_len = max(idxlist[bs:be], key=lambda s:s[3])[3]
q_len = max(idxlist[bs:be], key=lambda s:s[4])[4]
a_len = max(idxlist[bs:be], key=lambda s:s[5])[5]
if separate_caption:
c_len = max(idxlist[bs:be], key=lambda s:s[6])[6]
vids = [ s[0] for s in idxlist[bs:be] ]
qa_ids = [ s[1] for s in idxlist[bs:be] ]
# index[0]: video ids
# index[1]: question-answer ids
# index[2]: length of video frame sequences for each feature type
# index[3]: max length of the dialogue history
# index[4]: max length of questions
# index[5]: max length of answers
# index[-1]: number of dialogues
if separate_caption:
batch_indices.append((vids, qa_ids, x_len, h_len, q_len, a_len, c_len, be - bs))
else:
batch_indices.append((vids, qa_ids, x_len, h_len, q_len, a_len, be - bs))
bs = be
return batch_indices, n_samples
def pad_seq(seqs, max_length, pad_token):
output = []
for seq in seqs:
result = np.ones(max_length, dtype=seq.dtype)*pad_token
result[:seq.shape[0]] = seq
output.append(result)
return output
def prepare_data(seqs):
return torch.from_numpy(np.asarray(seqs)).cuda().long()
def make_batch(data, index, vocab, separate_caption=False, skip=[1,1,1], cut_a=False, cut_a_p=0.5):
if separate_caption:
x_len, h_len, q_len, a_len, c_len, n_seqs = index[2:]
else:
x_len, h_len, q_len, a_len, n_seqs = index[2:]
if data['features'] is not None:
feature_info = data['features']
else:
feature_info = []
for j in six.moves.range(n_seqs):
if len(feature_info) == 0:
x_batch = None
continue
vid = index[0][j]
fea = [np.load(fi[vid][0])[::skip[idx]] for idx,fi in enumerate(feature_info)]
if j == 0:
# pad the video features with ones to the max #seq in the batch
x_batch = [np.ones((x_len[i], n_seqs, fea[i].shape[-1]),dtype=np.float32)
if len(fea[i].shape)==2 else np.zeros((x_len[i], n_seqs, fea[i].shape[-2], fea[i].shape[-1]),dtype=np.float32)
for i in six.moves.range(len(x_len))]
for i in six.moves.range(len(feature_info)):
x_batch[i][:len(fea[i]), j] = fea[i]
pad = vocab['<blank>']
h_batch = []
q_batch = []
a_batch_in = []
a_batch_out = []
c_batch = None
if separate_caption:
c_batch = []
h_st_batch = None
dialogs = data['dialogs']
for i in six.moves.range(n_seqs):
qa_id = index[1][i]
history, question, answer_in, answer_out = dialogs[qa_id][2:6]
if cut_a:
pr = np.random.uniform()
if pr >= (1-cut_a_p):
end_idx = np.random.choice(range(1, len(answer_in)), 1)[0]
answer_out = np.concatenate((answer_in[1:end_idx],[answer_in[end_idx]]))
answer_in = answer_in[:end_idx]
if separate_caption:
c_batch.append(dialogs[qa_id][6])
h_batch.append(history)
q_batch.append(question)
a_batch_in.append(answer_in)
a_batch_out.append(answer_out)
h_batch = prepare_data(pad_seq(h_batch, h_len, pad))
q_batch = prepare_data(pad_seq(q_batch, q_len, pad))
a_batch_in = prepare_data(pad_seq(a_batch_in, a_len, pad))
a_batch_out = prepare_data(pad_seq(a_batch_out, a_len, pad))
if separate_caption:
c_batch = prepare_data(pad_seq(c_batch, c_len, pad))
batch = Batch(q_batch, h_batch, h_st_batch, x_batch, c_batch, a_batch_in, a_batch_out, pad)
return batch
def feature_shape(data):
dims = []
for features in data["features"]:
sample_feature = list(features.values())[0]
if isinstance(sample_feature, tuple):
dims.append(np.load(sample_feature[0]).shape[-1])
else:
dims.append(sample_feature.shape[-1])
return dims