-
Notifications
You must be signed in to change notification settings - Fork 0
/
1091. Shortest Path in Binary Matrix
117 lines (99 loc) · 3.54 KB
/
1091. Shortest Path in Binary Matrix
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
Given an n x n binary matrix grid, return the length of the shortest clear path in the matrix. If there is no clear path, return -1.
A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)) to the bottom-right cell (i.e., (n - 1, n - 1)) such that:
All the visited cells of the path are 0.
All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).
The length of a clear path is the number of visited cells of this path.
Example 1:
Input: grid = [[0,1],[1,0]]
Output: 2
Example 2:
Input: grid = [[0,0,0],[1,1,0],[1,1,0]]
Output: 4
Example 3:
Input: grid = [[1,0,0],[1,1,0],[1,1,0]]
Output: -1
Constraints:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j] is 0 or 1
#Solution
class Solution {
public int shortestPathBinaryMatrix(int[][] grid) {
int n = grid.length;
if(grid[0][0] != 0 || grid[n - 1][n - 1] != 0) {
return -1;
}
Queue<Pair<Integer, Integer>> queue = new LinkedList<>();
queue.add(new Pair<>(0,0));
grid[0][0] = 1;
while(!queue.isEmpty()) {
Pair<Integer, Integer> currentCell = queue.remove();
int x = currentCell.getKey();
int y = currentCell.getValue();
int distance = grid[x][y];
if(x == n - 1 && y == n - 1) {
// reached the destination
return distance;
}
// Add all surrounding zero-valued cells
// lower right
if(x + 1 < n && y + 1 < n){
if(grid[x + 1][y + 1] == 0) {
queue.add(new Pair<>(x + 1, y + 1));
grid[x + 1][y + 1] = distance + 1;
}
}
// check right
if(y + 1 < n) {
if(grid[x][y + 1] == 0) {
queue.add(new Pair<>(x, y + 1));
grid[x][y + 1] = distance + 1;
}
}
// check bottom
if(x + 1 < n) {
if(grid[x + 1][y] == 0) {
queue.add(new Pair<>(x + 1, y));
grid[x + 1][y] = distance + 1;
}
}
// upper right
if(x - 1 < n && x - 1 >= 0 && y + 1 < n) {
if(grid[x - 1][y + 1] == 0) {
queue.add(new Pair<>(x - 1, y + 1));
grid[x - 1][y + 1] = distance + 1;
}
}
// lower left
if(x + 1 < n && y - 1 < n && y - 1 >= 0) {
if(grid[x + 1][y - 1] == 0) {
queue.add(new Pair<>(x + 1, y - 1));
grid[x + 1][y - 1] = distance + 1;
}
}
// check top
if(x - 1 < n && x - 1 >= 0) {
if(grid[x - 1][y] == 0) {
queue.add(new Pair<>(x - 1, y));
grid[x - 1][y] = distance + 1;
}
}
// upper left
if(x - 1 < n && x - 1 >= 0 && y - 1 < n && y - 1 >= 0) {
if(grid[x - 1][y - 1] == 0) {
queue.add(new Pair<>(x - 1, y - 1));
grid[x - 1][y - 1] = distance + 1;
}
}
// left
if(y - 1 < n && y - 1 >= 0) {
if(grid[x][y - 1] == 0) {
queue.add(new Pair<>(x, y - 1));
grid[x][y - 1] = distance + 1;
}
}
}
return -1;
}
}